• Title/Summary/Keyword: Inner Surface Crack

Search Result 94, Processing Time 0.027 seconds

An Experimental Study on the Inner Crack Growth of Welded Connections of Steel Structures (강구조용접연결부(鋼構造鎔接連結部)의 내부구열성장(內部龜裂成長)에 관한 실험적(實驗的) 연구(硏究))

  • Min, Chang Dong;Kim, Ki Du;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.121-131
    • /
    • 1985
  • The characteristic of fatigue crack growth in the homogeneous or the soft welded connections used SWS-53 steel and HT-80 steel as base metals is examined by fractographic analysis. As a result of this analysis, the fact that the characteristic of fatigue crack growth which is observed and measured at the surface has wide application to engineering practice is verified. Also, the fact that the welded parts of HT-80 steel have much danger of brittle fracture is prooved. Considering that the striations are observed at the welded parts of SWS-58 steel and the spacing of striations has higher numerical value than da/dN, we can prove that inner fatigue crack growth may develop in zig-zag directions.

  • PDF

Thermal Stress Analysis of Brake Drum by Using Finite Element Analysis (유한요소법을 이용한 브레이크 드럼의 열응력 해석)

  • 박영철;박동성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.77-84
    • /
    • 2000
  • Nonlinear transient analysis is executed to obtain the temperature distribution, and to evaluate the thermal stress of brake drum by using FEA(finite element analysis). The result induces the reason why hair crack and the cause of drum failure occurs and the way how stress of drum decreases. The temperature of drum is in proportion to the drum thickness and it processes nonlinear changes at every points of drum. The higher bulk temperature raises, the more stress difference between inner surface and outer surface makes and the highest bulk temperature is at the corner section. It is necessary for the diminishment of the drum stress to make air flow, between drum and rim, move lively and use the materials of higher conductivity. The hair crack and the cause of drum failure seem to be started at the near corner section.

  • PDF

Comparison of oxide layers formed on the low-cycle fatigue crack surfaces of Alloy 690 and 316 SS tested in a simulated PWR environment

  • Chen, Junjie;Nurrochman, Andrieanto;Hong, Jong-Dae;Kim, Tae Soon;Jang, Changheui;Yi, Yongsun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.479-489
    • /
    • 2019
  • Low-cycle fatigue (LCF) tests were performed for Alloy 690 and 316 SS in a simulated pressurized water reactor (PWR) environment. Alloy 690 showed about twice longer LCF life than 316 SS at the test condition of 0.4% amplitude at strain rate of 0.004%/s. Observation of the oxide layers formed on the fatigue crack surface showed that Cr and Ni rich oxide was formed for Alloy 690, while Fe and Cr rich oxide for 316 SS as an inner layer. Electrochemical analysis revealed that the oxide layers formed on the LCF crack surface of Alloy 690 had higher impedance and less defect density than those of 316 SS, which resulted in longer LCF life of Alloy 690 than 316 SS in a simulated PWR environment.

Effect of Pretreatments on Reducing Surface Cracks of Heat-treated Western Hemlock Roundwoods

  • Kim, Chung-Ho;Kang, Chun-Won;Kang, Seog-Goo;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.343-351
    • /
    • 2012
  • A large diameter roundwood is an important element of Korean traditional buildings, Hanok, and is hard to be dried without surface cracks. Four different pretreatments, such as pre-cracking, oil heating, kerfing-oil heating and PEG impregnation, were investigated for reducing the surface cracks of large-diameter roundwood specimens during heat treatment. The roundwood specimens of pre-cracking, oil heating and kerfing-oil heating showed surface cracks during pretreatment, but that of PEG impregnation did not. It was confirmed that kerfing reduced the total crack width. Among the four pretreatments and control only the PEG impregnation roundwood specimen had no crack on both outer and inner surfaces after heat treatment. The PEG impregnation specimen shrank only 1.6% in the tangential direction while the pre-cracking did 8.0%.

Evaluation of the Crack Tip Fracture Behavior Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력 용기의 파괴거동 예측)

  • Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.908-913
    • /
    • 2000
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluations are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, two dimensional finite element analyses were applied for various surface crack. Total of 18 crack geometries were analyzed, and Q stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tin stress field due to constraint effect.

  • PDF

Effect of Reference Loads on Fracture Mechanics Analysis of Surface Cracked Pipe Based on Reference Stress Method (참조응력법에 입각한 표면균열배관의 파괴역학 해석 -참조하중의 영향 분석-)

  • Shim, Do-Jun;Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.524-531
    • /
    • 2004
  • To investigate relevance of the definition of the reference stress to estimate J and $C^{*}$ for surface crack problems, this paper compares FE J and $C^{*}$ results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) the local limit load, (ii) the global limit load, (iii) the global limit load determined from the FE limit analysis, and (iv) the optimized reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and $^{*}$. Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and $^{*}$. The use of the FE global limit load gives overall non-conservative estimates of J and $^{*}$. The reference stress based on the optimised reference load gives overall accurate estimates of J and $^{*}$, compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given.

Effects of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity $Al_2$O$_3$ Using Micro-Lithographic Technique-III: Stability of Crack-Like Pore (Ion Implantation으로 Ca를 첨가된 단결정 $Al_2$O$_3$의 Crack-Like Pore의 Healing 거동-III: Stability of Crack-Like Pore)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.887-892
    • /
    • 1999
  • The inner crack-like pore with controlled amount of Ca impurity in the high purity alumina single crystal sapphire had been created by micro-fabrication technique which includes ion implanation photo-lithography Ar ion milling and hot press technique. The crack-like pores in two-hour hot pressed specimen were extremely stable even after heat treating at 1,80$0^{\circ}C$ for 5 hours almost no healing was observed. But the crack-like pores in one-hour hot pressed specimen at 1,30$0^{\circ}C$ were healed by heat treatment and the amount of healing was increased with the heat treatment time and temperature and the amount of Ca addition. The edges of crack-like pore parallel to <1100> direction in (001) basal plane were stable but the edges normal to this direction in (00101) plane <1120> direction were unstable to facetting This means that the surface energy of alumina along the <1100> direction in (0001) basal plane in much lower than <1120> direction.

  • PDF

Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack (반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석)

  • Afsar, A.M.;Rasel, S.M.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study analyzes the apparent fracture toughness of a thick-walled cylinder with a functionally graded material (FGM) coating at the inner surface of the cylinder. The cylinder is assumed to have a single radial edge crack emanating from its inner surface. The crack surfaces and the inner surface of the cylinder are subjected to an internal pressure. The incompatible eigenstrain developed in the cylinder due to nonuniform coefficient of thermal expansion as a result of cooling from sintering temperature is taken into account. Based on a method of evaluating stress intensity factor introduced in our previous study, an approach is developed to calculate apparent fracture toughness. The approach is demonstrated for a cylinder with a TiC/$Al_{2}O_{3}$ FGM coating and some numerical results of apparent fracture toughness are presented graphically. The effects of material distribution profile, cylinder wall thickness, application temperature, and coating thickness on the apparent fracture toughness are investigated in details. It is found that all of these factors play an important role in controlling the apparent fracture toughness of the cylinder.

Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (ll) - Finite Element Validation - (배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (ll) - 유한요소해석을 통한 검증 -)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.139-146
    • /
    • 2002
  • This paper provides validations of the reference stress based J and $C^{*}$ estimations, proposed in Part I, for inner, circumferential surface cracked pipes under internal pressure and global bending against detailed 3-D elastic-plastic and elastic-creep FE results. For this purpose, actual tensile properties of two typical stainless steels (TP304 and TP316) are used for elastic-plastic FE analyses and two realistic creep laws are used for elastic-creep FE analyses. For a total of twenty cases considered in this paper, agreements between the proposed reference stress based J and $C^{*}$ estimations and the FE results are excellent. More important aspect of the proposed estimations is that they can be used to estimate J and $C^{*}$ not only at the deepest point of the surface crack but also at an arbitrary point along the crack front.front.

Engineering Estimation of Elastic-Plastic Fracture Parameter for Circumferential Surface Cracked Pipes: Part II (배관 원주방향 표면균열에 대한 탄소성 파괴 파라미터의 예측 (II))

  • Kim, Yun-Jae;Kim, Jin-Su;Kim, Young-Jin;Park, Yun-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.310-315
    • /
    • 2001
  • This paper provides validations of the reference stress based J and $C^*$ estimations, proposed in Part I, for inner, circumferential surface cracked pipes under internal pressure and global bending against detailed 3-D elastic-plastic and elastic-creep FE results. For this purpose, actual tensile properties of two typical stainless steels (TP304 and TP316) are used for elastic-plastic FE analyses and two realistic creep laws are used for elastic-creep FE analyses. For a total of twenty cases considered in this paper, agreements between the proposed reference stress based J and $C^*$ estimations and the FE results are excellent. More important aspect of the proposed estimations is that they can be used to estimate J and $C^*$ not only at the deepest point of the surface crack but also at an arbitrary point along the crack front.

  • PDF