• Title/Summary/Keyword: Inner Feedback Control

Search Result 68, Processing Time 0.018 seconds

A Current Source using the 12-Pulse Phase-Controlled Rectifier (12-펼스 위상제어 정류기를 사용한 전류원)

  • 송의호;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.545-556
    • /
    • 1990
  • A design method of a current source using 12-pulse phase-controlled rectifier (PCR) is presented. The critical inductance of the 12-pulse PCR is derived and it is shown that the critical inductance can be reduced using a current source. The control circuit of the 12-pulse PCR with an inner fast dynamic loop is proposed to give the frequency synchronism and to reduce the subharmonics due to the unbalance of the transformer of the power line. This circuit is analyzed and its dynamic loop is optimized. The optimal constant PIMF (proportional, integral and measurable variable feedback, and feedforware) controller is also designed using the time-weighted quadratic performance index. It is shown via experimental results that the proposed design method gives high dynamic and static performance of the current source using the 12-pulse PCR.

Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory (비선형 탄성이론에 기초한 혈관류 생체재료 실험장치)

  • Kang, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.

Stable Standby-mode Implementation of Multi-output Power Supply using a New Load Current Estimation Technique with Linear Regulator (다중 출력 전원공급장치의 안정적 대기전력 구현을 위한 새로운 방식의 부하전류 측정기법 구현)

  • Lee, Jong-Hyun;Jung, An-Yeol;Kim, Dong-Joon;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 2011
  • In this paper, a new standby-mode control method for multiple output switching-mode power-supply is suggested, which uses the control signal of the feedback compensator of the inner loop in the linear voltage regulator located at the transformer secondary side, as the load current information. Conventional method has a problem that standby mode occurs depending only on the load condition of the main controller output, which makes the other secondary side output very inaccurate by burst mode operation. The proposed method detects all the load current information and operates in burst mode only when the all of them are light load condition. Minimum of the additional components are required for the implementation of the proposed method because the load information is obtained from the existing feedback circuit of the post-stage linear regulator. In this paper, the operating principles of the proposed standby-mode circuit are presented with an numerical analysis, and are verified by 25W hardware prototype implementation.

Model Identification and Design of Optimized IMC-Cascade Controller (모델 동정과 최적의 IMC-Cascade 제어기 설계)

  • Cho, Joon-Ho;Cho, Hyun-Seob;Hwang, Hyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6027-6033
    • /
    • 2012
  • In this paper, we proposed to model identification in frequency domain using relay feedback and Design of internal model controller(IMC) with Cascade controller. The parameters of controller in the inner loop are determined to minimize the integral of time multiplied by the absolute value of error (ITAE) value of performance Index. The controller of outer loop and parameters of IMC-PID controller can be obtain using identified model. The model identification is considered that it is the transient response and the steady-state response through the use of nyquist curve. Simulation examples are given to show the better performance of the proposed method than conventional methods.

A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network (신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Pneumatic actuators are widely used in a variety of hazardous working environments. Any process that involves pneumatic actuation is also recognized as "eco-friendly". In most cases, applications of pneumatic actuators require only point-to-point control. In recent years, research efforts have been directed toward achieving precise position tracking control. In this study, a tracking position control method is proposed and experimentally evaluated for a linear positioning system. The positioning system is composed of a pneumatic actuator and a 3-port proportional valve. The proposed controller has an inner pressure control loop and an outer position control loop. A PID controller with feedback linearization is used in the pressure control loop to nullify the nonlinearity arising from the compressibility of the air. The position controller is also a PID controller augmented with the friction compensation by a neural network. Experimental results indicate that the proposed controller significantly improves the tracking performance.rformance.

  • PDF

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method (적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구)

  • 허남수;한성현;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.