• Title/Summary/Keyword: Innate immune response

Search Result 262, Processing Time 0.026 seconds

Nucleotide-Binding Domain and Leucine-Rich Repeat Containing Receptor (NLR) and its Signaling Pathway

  • Park, Sangwook;Gwon, Sun-Yeong;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 2013
  • Since the identification and characterization of toll-like receptors (TLR) in Drosophila, numerous scientific studies have examined the role of TLRs in host innate immunity. Recent studies have suggested a convergence of the nuclear factor kappa B (NF-${\kappa}B$) signaling and cytokine production regulated by the cytosolic elicitor known as NLRs (nucleotide-binding domain and leucine-rich repeat containing domain receptors) as a key modulator in inflammatory diseases. Among the NLRs, NOD1 and NOD2 have been intensively investigated for its role in inflammatory bowel disease (IBD). On the other hand, NLRs such as NLRP3, NLRP1, and NLRC4 (also known as IPAF) have been identified to form the inflammasome to activate downstream signaling molecules in response to pathogenic microbes. There is evidence to suggest that substantial crosstalk exists for the TLR and NLR signaling pathway in response to pathogen associated molecular pattern (PAMP). However, the substrate and the mechanistic role of NLRs are largely unknown in innate immune response. Understanding the signaling mechanisms by which NLRs recognize PAMP and other danger signals will shed light on elucidating the pathogenesis of various human inflammatory diseases such as IBD.

Changes in Caenorhabditis elegans Exposed to Vibrio parahaemolyticus

  • Durai, Sellegounder;Pandian, Shunmugiah Karutha;Balamurugan, Krishnaswamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1026-1035
    • /
    • 2011
  • Vibrio parahaemolyticus, which owes its origin to the marine environment, is considered as one of the most common causes of infectious diarrhea worldwide. The present study investigated the pathogenicity of V. parahaemolyticus against the model organism, Caenorhabditis elegans. Infection in the host was localized with GFP-tagged V. parahaemolyticus using confocal laser scanning microscopy. The times required for causing infection, bacterial load in intestine, chemotactic response, and alteration in pharyngeal pumping were analyzed in the host system. In addition, the regulation of innate immune-related genes, lys-7, clec- 60, and clec-87, was analyzed using real-time PCR. The role of immune-responsible pmk-1 was studied using mutant strains. The pathogenicity of environmental strain CM2 isolated from the Gulf of Mannar, India was compared with that of a reference strain obtained from ATCC. The pathogen infected animals appeared to ward off infection by up-regulating candidate antimicrobial genes for a few hours after the exposure, before succumbing to the pathogen. For the first time, the pathogenicity of V. parahaemolyticus at both the physiological and molecular levels has been studied in detail using the model organism C. elegans.

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection

  • Park, Sang June;Lee, Jong Soo;Kwon, Byungsuk;Cho, Hong Rae
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.113-120
    • /
    • 2014
  • Two-signal models are useful in explaining various types of immune responses. In particular, secondary, so-called costimulatory, signals are critically required for the process of T-cell activation, survival, differentiation, and memory formation. Early studies in rodent models showed that targeting T-cell costimulatory pathways elicits immunological tolerance, providing a basis for development of costimulatory therapeutics in allograft rejection. However, as the classic definition of T-cell costimulation continues to evolve, simple blockade of costimulatory pathways has limitations in prevention of allograft rejection. Furthermore, functions of costimulatory molecules are much more diverse than initially anticipated and beyond T cells. In this mini-review, we will discuss CD137-CD137L bidirectional signals as examples showing that two-signals can be applicable to multiple phases of immune responses.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.45-45
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, RAL increased the production of immunostimulatory mediators and phagocytotic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activation of JNK and PI3K/AKT signaling was reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

  • PDF

Modulatory Effects of Herbal Medicines Extracts on Cytokine Release in Immune Response of RAW 264.7 and TK-1 (한약재 9종의 추출물이 RAW 264.7과 TK-1 세포의 cytokine 분비에 미치는 영향)

  • Bae, Su-kyoung;Cho, Se-hee;Ahn, Tae-kyu;Kim, Jee-in;Kim, Bong-hyun;Lim, Jae-hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.6
    • /
    • pp.1244-1255
    • /
    • 2018
  • Objectives: The purpose of this study is to determine the stimulatory effects of herbal medicines extracts on cytokines release of immune response in immune cells, RAW 264.7 and TK-1 cell. Methods: In a total of 18 extracts, 9 water extracts and 9 ethanol extracts, of herbal medicines, the quantities of polyphenolic compounds were measured and anti-oxidation activities were determined by colorimetric assay. The herbal medicine extracts were treated on RAW 264.7 and TK-1, respectively, and then the releasing changes of tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6, and interleukin-10 from both immune cells were determined by the enzyme-linked immunosorbent assay. Results: The polyphenol contents were measured to be 1.56~0.64 mg/g of solids in the two types of extracts with 9 kinds of herbal medicines, while antioxidant activities were found to be 95.62~31.46% as compared with ascorbic acid control. In RAW 264.7 cells treated with herbal medicines extracts, the secretion of $TNF-{\alpha}$ increased to 1.31~1.18 fold, and the amounts of IL-6 were 68.4~97.9% compared with the control group treated with LPS alone. In particular, the secretion amount of anti-inflammatory cytokine IL-10 was suppressed by treatment using herbal medicine extracts. In the case of TK-1 cells, $TNF-{\alpha}$ secretion was suppressed according to the concentrations of herbal extract. The released amounts of IL-10 were shown at 10~40 pg/ml, and increased in a dose-dependent manner. Conclusions: Herbal medicines extracts act on macrophages inducing the secretion of inflammatory cytokine, thereby enhancing the activity of innate immunity. When acting on T cells involved in adaptive immunity, the secretion of anti-inflammatory cytokine is increased to induce the inhibition of the innate immune response.

Effects of Various Field Coccidiosis Control Programs on Host Innate and Adaptive Immunity in Commercial Broiler Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.;Jang, Seung-I.;Lee, Sung-Hyen
    • Korean Journal of Poultry Science
    • /
    • v.39 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Coccidiosis control programs such as vaccines or in-feed anticoccidials are commonly practiced in the poultry industry to improve growth performance and health of commercial broiler chickens. In this study, we assessed the effects of various coccidiosis control programs (e.g., in ovo vaccination, synthetic chemicals, and antibiotic ionophores) on immune status of broiler chickens vaccinated against infectious bronchitis virus and Newcastle disease virus (ND) and raised on an Eimeria-contaminated used litter. In general, the levels of ${\alpha}$-1-acid glycoprotein, an acute phase protein, were altered by the treatments when measured at 34 days of age. Splenocyte subpopulations and serum antibody titers against ND were altered by various coccidiosis control programs. In-ovo-vaccinated chickens exhibited highest mitogenic response when their spleen cells were stimulated with concanavalin A (Con A) at 7 days of age. It is clear from this study that the type of coccidiosis control program influenced various aspects of innate and adaptive immune parameters of broiler chickens. Further studies will be necessary to delineate the underlying relationship between the type of coccidiosis control program and host immune system and to understand the role of other external environmental factors such as gut microbiota on host-pathogen interaction in various disease control programs.

Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila

  • Koranteng, Ferdinand;Cho, Bumsik;Shim, Jiwon
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.101-108
    • /
    • 2022
  • Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.

COVID19 Innate Immunity through Natural Medicine in Palau

  • Christopher U. Kitalong;Tmong Udui;Terepkul Ngiraingas;Pearl Marumoto;Victor Yano
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.15-15
    • /
    • 2020
  • In an internal document, CORONA-VIRUS DISEASE 2019 (COVID-19) PLAN, release developed stated that "on January 22, 2020, Palau Ministry of Health activated its emergency operations center, and since then has prepared and put in place measures in response to this global pandemic." The actions eventually led to the closure of most flights coming into Palau as a method to protect its population. The population of is at high risk with COVID19 due to the very elevated rate of NCD's, as well as the limited access to proper testing and treatment facilities. Increased use of traditional medicines in the population has reduced the co-morbidities by reducing risk factors. Furthermore, the expansion of tradtional NCD therapies, especially that of DAK reduce pressure due to obesity and diabetes therefore allowing for unimpaired immune systems to combat deadly infectious diseases such as COVID19.

  • PDF

Immunopathogenesis of Non-Tuberculous Mycobacteria Lung Disease (비결핵항산균 폐질환의 면역 발병 기전)

  • Jiwon Lyu
    • The Korean Journal of Medicine
    • /
    • v.99 no.4
    • /
    • pp.169-179
    • /
    • 2024
  • In recent years, the incidence and prevalence of non-tuberculous mycobacteria lung disease (NTM-LD) has been increasing worldwide. In Korea, Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex account for most common cause of NTM-LD. It is essential to elucidate the pathophysiology of NTM-LD. The pathophysiology of NTM-LD has not been fully understood, however, it can be divided into bacterial and host-side factor. Among the host factor, innate immunity plays an essential role in the initial host immune response against intracellular non-tuberculous mycobacteria (NTM), and adaptive immunity also has a role. However, the role of these immunity in mycobacterial disease has been mainly studied in tuberculosis, but studies on its role in NTM are limited. In this review, I focus on NTM innate and adaptive immunity, the role of macrophages and neutrophils, and host interaction in NTM infection.