• Title/Summary/Keyword: Inline casing

Search Result 4, Processing Time 0.019 seconds

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.

A Feasibility Study on the Flow Passage Shape for an Inline Francis Hydro Turbine

  • Chen, Chengcheng;Singh, Patrick Mark;Inagaki, Morihito;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.5-13
    • /
    • 2015
  • The aim of this study is to investigate the feasibility of a new type of casing for the inline Francis hydro turbine. Comparing with the traditional turbine with spiral casing, this turbine is unique for its flow passage shape at the first stage of flow to the turbine, very similar to a pipe, called inline casing. Before the commercialization of this new type of casing, a global investigation of the inline casing must be conducted. Preserving the structural characteristics of simple, compact-size and convenient for manufacture, different shapes of the belt passage, vertical corner and stay vanes are applied to investigate the influence of flow passage shape on the turbine performance. Stable and relatively high efficiency is achieved regardless of flow passage shape difference proving the feasibility of the inline casing used in a hydro turbine.

Performance characteristic investigation and stay vane effect on Ns100 inline francis turbine

  • Singh, Patrick Mark;Chen, Zhenmu;Hwang, Yeong-Cheol;Kang, Min-Gu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.397-402
    • /
    • 2016
  • This study presents the performance characteristics of a small Francis turbine with an inline casing and is a continuation of a previous study. A new runner design has been implemented using the previous facility. The specific speed of the new runner has been modified from $N_s$ 80 to $N_s$ $100m-kW-min^{-1}$. This turbine can be installed in a city water supply system. To dissipate excess pressures in the water line system an inline-turbine can be used instead of an inline-pressure reducing valve. Thus, some of the energy can be recovered by utilizing the pressure difference. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of a common spiral casing. As a characteristic of inline casing, the flow accesses to the runner are in the radial direction, showing low efficiency. The installation of vanes improves the internal flow and positively affects the output power. In contrast to the previous study, the new runner reduces the effect of the stay vanes by maintaining a higher efficiency.

A Study for a Automotive Neutral Gear Rattle and the Clutch Torsional Characteristics (자동차 공회전시 기어래틀과 클러치 비틀림특성에 대한 연구)

  • Hong, D.P.;Chung, T.J.;Tae, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.30-41
    • /
    • 1995
  • Gear rattle is a source of vibration and noise in automotive gearbox casing and generally occurs at or near system resonant frequencies. The neutral gear rattle of the gearbox. is affected by the stiffness and hysteresis torque in the clutch disk and drag torque determining balancing point of the clutch disk operating range. The experiment is carried out in the pre-damper type clutch and a manual transmission of a automobile equipped for inline four-sylinder four-cycle 1.5L MPI engine and the computer simulation is executed by 5th order Runge-Kutta method. The results of the simulation analysis and experimental studies show the dynamic behavior of clutch and a phenomenon of the neutral gear rattle with respect to drag torque and torsional characteristics of the clutch.

  • PDF