• 제목/요약/키워드: Inline Mixing System

검색결과 4건 처리시간 0.038초

인라인 응집제 혼화시스템의 혼화 및 응집특성 (Characteristics of Mixing and Coagulation in an Inline Coagulant Mixing System)

  • 양희천;박상규;왕승호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3139-3143
    • /
    • 2007
  • The objective of this paper was to investigate the mixing characteristics of an three-stage inline coagulant mixing system experimentally. Wastewater samples of pH 8.5 and initial turbidity 1,000NTU were taken from a site of tunneling work. At the constant dosage, 0.36mL/L, of polymer as coagulant aids, the coagulation efficiency with the dosage of PAC as coagulant was about 4${\sim}$6% at 10 minutes after sampling. In the case of 2 different velocity gradient conditions, the efficiency of turbidity removal was increased about 6.5${\sim}$8% with increasing the dosage of coagulant while, the efficiency was increased about 20${\sim}$21.5% with increasing the dosage of coagulant aids. The efficiency of turbidity removal with the settling time after sampling was about 90% after 1 minute, and the efficiency was about 95% after 5 minutes.

  • PDF

인라인 혼화 및 응집 시스템의 성능특성 (Performance characteristics of inline mixing and coagulation system)

  • 김동준;박상규;양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권3호
    • /
    • pp.269-275
    • /
    • 2014
  • 본 연구는 PI 개념에 근거한 수처리용 인라인 혼화 및 응집 시스템의 성능특성에 대한 실험적 연구를 목적으로 한다. 3단 인라인 혼화 및 응집 시스템은 처리 원수 저장조, 응집제 주입 정량펌프, 혼화 및 응집관, 침전조 및 제어 판넬로 구성된다. 동일한 응집제와 응집보조제의 주입량 조건에서 응집제의 증가에 따른 탁도 제거율에 비해 응집보조제의 증가에 따른 탁도 제거율이 약 3배 정도 높게 나타났다. 동일한 혼화 및 응집 시간 조건에서 인라인 방식이 기계식에 비해서 평균적으로 약 4.6배 정도 탁도 제거율이 높게 나타났다.

스태틱 믹서 개발 및 응용 (Development and Application of Static Mixer)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.506-513
    • /
    • 2007
  • One of the most widely used static mixers is Sulzer type mixer. However the structure of the element is so complicated that the mixing efficiency is better than others, whereas the pressure drop is larger than the others. Therefore new elements are necessary to reduce the pressure drop and to minimize the decrease of the mixing efficiency compared with the Sulzer ones. The objectives of this study are to develop new static mixer and to perform the experimental investigation in order to evaluate the performance of the new one, and to investigate the applicability of the one in an inline coagulant mixing system for water treatment, The pressure drops of the new static mixer elements were about 4-12% lower than that of the Sulzer SMX one, and the mixing efficiency of the Sulzer SMX one was about 2-5% higher than that of the new ones. The inline coagulant mixing system with a new static mixer element performed significantly better than the traditional mechanical mixing system for turbidity removal.

응집공정이 세라믹 정밀여과막 파울링에 미치는 영향 (Effect of coagaulation on ceramic microfiltration membrane fouling)

  • 황영진;임재림;최영종;왕창근
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.459-469
    • /
    • 2009
  • It is well known that coagulation pretreatment can reduce foulants prior to membrane filtration. The purpose of this research was to investigate the effects of coagulation on fouling of ceramic microfiltration membrane($0.1 {\mu}m$) using pilot plant of $150m^3/day/train$ capacity. Train A membrane system has pretreatment process of ozonation and coagulation while train B has only coagulation. Two types of coagulation operation were investigated: back mixer(rapid mixing with or without slow mixing) which is a conventional mechanically stirred mixer and an inline static mixer. Ozone dose rate for train A was 1 mg/L and ozone contact time was 12 min. The coagulation dose(PACl 10% as $Al_2O_3$) rate was changed 20~40 mg/L according to experimental schedule. In this experimental conditions, the coagulation of back mixer type with rapid mixing(GT=72,000) and slow mixing(GT=45,000) was the best effective in reduction of ceramic membrane fouling regardless preozonation. Especially, the effect of inline static mixer was sensitive to change in water quality. Ozonation mainly affected irreversible fouling rather than reversible fouling in accordance with less adsorption of NOM on the membrane surface. Thus, the increase rate of the nomalized TMP(trans membrane pressure) at $25^{\circ}C$ for train A was relatively lower than that of train B under same coagulation process with same coagulant dosage. The best performance of ceramic membrane appeared in case of combined process with ozonation, therefore this integrated process is able to archive less coagulant dosing and secure a stability of ceramic membrane system.