• Title/Summary/Keyword: Inlet-Air Temperature

Search Result 674, Processing Time 0.025 seconds

The effect of inlet air temperature for the cooling of the military electronic chip on the thermal conductive board (공기온도가 열전도성 기판 위에 탑재된 군용 전자칩 냉각에 미치는 영향)

  • 이진호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.195-206
    • /
    • 2002
  • The conjugate heat transfer from the simulated module in a horizontal channel with the variation of inlet air temperature is experimentally investigated. The aim of this study is to estimate temperature difference between a module and inlet air. This study is performed with the variation of parameters that are inlet air temperature(Ti=25~$55^{\circ}C), thermal resistance( $R_c$=0.05, 4.11, 158 K/W), inlet air velocity(Vi=0.1~1.5m/s), and input power(Q=3, 7 W). The results show that the effect of inlet air temperature is little, at the case of using conductive board. And input power was most effective parameter on the temperature difference between module and Inlet air.

Effects of the angle of secondary air inlet on the uniformity of temperature distribution inside an incinerator (2차 공기 주입각이 소각로 내부의 온도 분포 균일도에 미치는 영향)

  • Kim S. J.;Min I. H.;Park M. H.;Park M. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2000
  • This research is aimed to find out how the inlet angle of secondary air affects the uniformity of temperature distribution inside a small incinerator. A commercial code, PHOENICS, is used to simulate the thermal-flow field of an incinerator. The computational grid system is constructed by Multi-Block technique provided by PHOENICS. Numerical experiments are done with the five different angles of secondary air inlet. The uniformity of temperature distribution is evaluated by checking the standard deviation of temperature distribution in an incinerator. The computational results show that there is the minimum value of standard deviation at the certain angle of secondary air inlet, which means that there is an optimum angle of secondary air inlet that could improve the uniformity of temperature distribution in an incinerator. The optimum angle of secondary air inlet is between 30 degree and 45 degree in this particular case.

  • PDF

Study on Characteristics of Spray Combustion for Various Operation Conditions in a Gas Turbine Combustor (가스터빈 연소기 내 운전조건 변화에 따른 분무연소 특성 연구)

  • Cho, S.P.;Kim, H.Y.;Park, S.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.3-10
    • /
    • 2002
  • In this work, numerical parametric studies on spray combustion have been conducted. In simulation of turbulence, RNG ${\kappa}-{\varepsilon}model$ is adopted. Initial spray distribution is specified by Rosin-Rammler distribution function. Eddy break-up model is adopted as a combustion model. The parameters considered are inlet air temperature, swirl number, and SMD. With higher inlet air temperature, the axial velocities are increased and penetration of primary jet is stronger than that of lower inlet air temperature and temperature at the exit of combustor is more uniform. Combustion efficiency is improved with high inlet air temperature. The effect of swirl number on flow field is not significant. It affect only recirculation zone. So temperature at upstream of combustor is influenced. Combustion efficiency deteriorate as SMD of fuel spray increase.

  • PDF

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

Altitude Effects on the Combustion of the Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.476-479
    • /
    • 2008
  • The combustion efficiency of the solid fuel ramjet is affected by the inlet air temperature. And this inlet air temperature is dependent on the flight Mach number and the environment air temperature. If the flight altitude is changeable, the inlet air temperature and the air density also vary. The performance efficiency is investigated with this variables related to the combustion efficiency.

  • PDF

Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously (가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

Spray combustion with high temperature air in a Gas Turbine Combustor (가스터빈 연소기내의 고온공기 분무연소 해석)

  • Jo, Sang-Pil;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical study was conducted to determine the effects of high temperature air, including equivalent ratio on flow field, temperature, evaporation, and overall temperature distribution in gas turbine combustor. A sector model of a typical wall jet can combustor, featuring introduction of primary air and dilution air via wall jet, was used in calculations. Flow field and temperature distribution were analyzed. Operating conditions such as inlet temperature and overall equivalent ratio were varied from 373 to 1300 K, and from 0.3 to 0.6, respectively, while any other operating conditions were fixed. The RNG ${\kappa}-{\varepsilon}$ model and eddy breakup model were used for turbulence and combustion model respectively. It was found that the increase with the inlet air temperature, velocity in the combustor is accelerated and evaporation of liquid fuel is not affected in primary zone, high temperature inlet air enhances the evaporation and improves overall temperature distribution factor.

  • PDF

A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구)

  • Choi, Inchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

An Experimental Study on the Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상조건하에서 핀-관 열교환기 성능에 관한 실험적 연구)

  • Lee, K.S.;Pak, H.Y.;Lee, T.H.;Lee, N.G.;Lee, S.Y.;Lee, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.319-328
    • /
    • 1995
  • In this study, the experiment with 2rows-2columns fin-tube heat exchanger under forced convection and frosting condition is performed. The influence of each operating condition(the temperature of air, the humidity of air, the velocity of air, the temperature of coolant) on the growth of frost layer, air-side pressure drop, and characteristics of heat transfer is investigated. The experimental results show that the frost thickness increases rapidly in the early stage of frost formation and increases linearly after sometime. The frost thickness increases with the increase of the inlet air humidity and velocity and the decrease of inlet air temperature and coolant temperature. It is also found that the total energy transfer rate increases with the increase of inlet air temperature and velocity and with the decrease of inlet air humidity and coolant temperature.

  • PDF

Improvement of Gas Turbine Performance Using LNG Cold Energy (액화천연가스의 냉열을 이용한 가스터빈의 성능향상)

  • Kim, Tong Seop;Ro, Sung Tack;Lee, Woo Il;Choi, Mansoo;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.653-660
    • /
    • 1999
  • This work describes analysis on the effect of inlet air cooling by the cold energy of liquefied natural gas(LNG) on the performance of gas turbines. Gas turbine off-design analysis program to simulate the influence of compressor inlet temperature variation is prepared and an inlet air cooler is modeled. It is shown that the degree of power augmentation is much affected by the humidity of inlet air. If the humidity is low enough, that is the water content of the air does not condense, the temperature drop amounts to $18^{\circ}C$, which corresponds to more than 12% power increase, in case of a $1350^{\circ}C$ class gas turbine with methane as the fuel. Even with 60% humidity, about 8% power increase is possible. It is found that even though the fuel contains as much as 20% ethane in addition to methane, the power improvement does not change considerably. It is observed that if the humidity is not too high, the current system is feasible oven with conceivable air pressure loss at the inlet air cooler.