• Title/Summary/Keyword: Inlet temperature

Search Result 1,505, Processing Time 0.027 seconds

Transient Response of a Stratified Thermal Storage Tank to the Variation of Inlet Temperature

  • Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.14-26
    • /
    • 1998
  • This paper deals with approximate analytical solutions for the two-region one-dimensional model describing the charging process of stratified thermal storage tanks at variable inlet temperature with momentum-induced mixing. An arbitrarily increasing inlet temperature is decomposed into inherent step changes and intervals of continuous change. Each continuous interval is approximated as a finite number of piecewise linear functions, which admits an analytical solution for perfectly mixed region. Using the Laplace transform, the temperature profiles in plug flow region with both the semi-infinite and adiabatic ends are successfully derived in terms of well-defined functions. The effect of end condition on the solution proves to be negligible under the practical operating conditions. For a Quadratic variation of inlet temperature, the approximate solution employing a moderate number of pieces agrees excellently with the exact solution.

  • PDF

Particle Size Analysis of Cadmium Aerosol for Cadmium Inhalation Toxicology Study (766ppm Cadmium Nebulizing Solution) (카드뮴의 흡입독성 연구를 위해 설계된 에어로졸 발생장치에서 발생된 카드뮴 에어로졸의 입경분석(766ppm 카드뮴 네뷸라이징 용액))

  • Jeung Jae Yeal;Milton Donald K.;Kim Tae Hyeung;Lee Jong Young;Jahng Doo Sub;Kang Sung He;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1035-1041
    • /
    • 2002
  • Ultrasonic nebulizer with the application of new engineering methodology and the design of electronic circuit and 766ppm Cd nebulizing solution were used to generate cadmium aerosol for inhalation toxicology study. The results of particle size analysis for cadmium aerosol were as following. The highest particle counting for source temperature 20℃ was 43.449 x 10³ in inlet temperature 250℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 50℃ was 43.211 x 10³ in inlet temperature 100 ℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 70℃ was 41.917x10³ in inlet temperature 250℃ and particle diameter 0.75㎛. The ranges of geometric mean diameter(GMD) were 0.677-1.009㎛ in source temperature 20℃, 0.716-0.963㎛ in source temperature 50℃, and 0.724-0.957㎛ in source temperature 70℃. The smallest GMD was 0.677㎛ in source temperature 20℃ and inlet temperature 20℃. and the largest GMD was 1.009㎛ in source temperature 20℃ and inlet temperature 20℃. The ranges of geometric standard deviation(GSD) were 1.635-2.101 in source temperature 20℃. 1.676-2.073 in source temperature 50℃, and 1.687-2.051 in source temperature 70℃. The lowest GSD was 1.635 in source temperature 20℃ and inlet temperature 20℃, and the highest GSD was 2.101 in source temperature 20℃ and inlet temperature 200℃. Aerosol generated for cadmium inhalation toxicology study was polydisperse aerosol. The ranges of mass median diameter(MMD) were 1.399-5.270㎛ in source temperature 20℃. 1.593-4.742㎛ in source temperature 50℃, and 1.644-4.504㎛ in source temperature 70℃. The smallest MMD was 1.399㎛ in source temperature 20℃ and inlet temperature 20℃, and the largest MMD was 5.270㎛ in source temperature 20℃ and inlet temperature 200℃. Increasing trends for GMD, GSD, and MMD were observed with same source temperature and increase of inlet temperature. MMD for inhalation toxicology testing in EPA guidance is less than 4㎛. In our results. inlet temperature 20 and 50℃ in source temperature 20℃, and inlet temperature 20 to 150℃ in source temperature 50 and 70℃ were conformed to the EPA guidance. MMD for inhalation toxicology testing in OECD and EU is less than 3㎛. In our results, inlet temperature 20 and 50℃ in source temperature 20, 50, and 70℃ were conformed to the OECD and EU guidance.

Study on Structural Safety Analysis of EGR Valve (EGR Valve의 구조 안전성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.528-534
    • /
    • 2011
  • This study analyzes thermal stress and durability fatigue on the modelling of EGR valve. In case of 10% opening at its inlet, the minimum temperature gets cool as 3 times as inlet temperature. The maximum equivalent stress becomes lowest as the value of $2.6274{\times}109$ Pa and fatigue life becomes highest as 23.657 Cycle. But the minimum temperature gets cool as 2.2 times as inlet temperature in case of 50% opening at its inlet. The equivalent stress becomes higher and fatigue life becomes lower than in case of 10% opening. In case of 100% opening at its inlet, the minimum temperature gets cool as 0.2 times as inlet temperature. The equivalent stress becomes lower and fatigue life becomes higher than in case of 50% opening. Maximum equivalent stress and total deformation are shown at the closing of EGR valve by the pressure of inflow gas. The structural analysis result of this study can be effectively utilized with the design of EGR valve by investigating prevention and durability against its damage.

Development of a Polytropic Index-Based Reheat Gas Turbine Inlet Temperature Calculation Algorithm (폴리트로픽 지수 기반의 재열 가스터빈 입구온도 산출 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.483-494
    • /
    • 2023
  • Recently, gas turbine generators are widely used for frequency control of power systems. Although the inlet temperature of a gas turbine is a key factor related to the performance and lifespan of the device, the inlet temperature is not measured directly for reasons such as the turbine structure and operating environment. In particular, the inlet temperature of the reheating gas turbine is very important for stable operation management, but field workers are experiencing a lot of difficulties because the manufacturer does not provide information on the calculation formula. Therefore, in this study, we propose a method for estimating the inlet temperature of a gas turbine using a machine learning-based linear regression analysis method based on a polytropic process equation. In addition, by proposing an inlet temperature calculation algorithm through the usefulness analysis and verification of the inlet temperature calculation model obtained through linear regression analysis, it is intended to help to improve the level of reheat gas turbine combustion tuning technology.

Numerical Study on the Application of High Temperature Catalytic Combustion to a Gas Turbine (고온촉매연소의 가스터빈 적용에 관한 수치적 연구)

  • Kim, Hyung-Man;Jeun, Ho-Sig;Jang, Seok-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.989-994
    • /
    • 2001
  • Numerical simulations of high temperature catalytic combustion have been performed for the application to a gas turbine combustor. Dependences of inlet temperature and pressure on the distributions of temperature and species concentrations were investigated using plug flow model with detailed homogeneous and heterogeneous chemistries of methane-air mixtures. Honeycomb typecombustor deposited with Pt catalyst of 100mm in length and 26mm in diameter is used. The results show that rapid increase of temperature profile occurs earlier with the increase of inlet temperature and the decrease of inlet pressure. The condition which catalytic combustion is stabilized exists at certain range of inlet temperature and pressure. The state of catalytic combustion is also confirmed by the distributions of species concentration.

  • PDF

Analysis of the relationship between operational condition and temperature distribution in a small incinerator (소형 소각로에서 운전조건과 온도분포 사이의 관계 분석)

  • Kim, Sung-Joon;Park, Jong-Hwan;Chun, Bong-Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.63-70
    • /
    • 2000
  • One aims to find out how the operation condition of secondary inlet angle effects the temperature distribution inside a small incinerator. A finite volume commercial code, PHONICS, is used to simulate the temperature field in an incinerator. The computational grid system is constructed by Multi-Block technique. The governing equations based on the curvilinear coordinates are used. Numerical experiments are done with the five variations of secondary air inlet. The temperature distribution is quantified by the statistical deviation of temperature in an incinerator. The computational analysis says that the certain angle of secondary air inlet could improve the uniformity of temperature distribution in an incinerator.

  • PDF

Turbomachinery Inlet Flow Measurement without the Effect of Instrumentation (입구 Instrumentation의 영향을 최소화하는 터보기계 성능측정방법)

  • Kang, Jeong-Seek;Ahn, Iee-Ki
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.8-12
    • /
    • 2009
  • It is absolutely necessary to measure the inlet pressure and temperature of a turbine or a compressor to evaluate the performance of it. And to measure the representative-averaged pressure and temperature of turbine inlet flow, rake is normally used. Rake has several elements for temperature and pressure and several rakes are installed at the inlet to average the radial and circumferential distribution of inlet flow. However the rakes cause unexpected losses and flow distortion at the turbine inlet which make the measured rake data different from true inlet value. So the evaluation of a turbine or a compressor performance becomes not accurate. This study suggest a correlation method which measure the loss by inlet rake and incorporates it in evaluating the performance of turbomachinery.

  • PDF

Analytical approaches to the charging process of stratified thermal storage tanks with variable inlet temperature (변온유입 성층축열조의 충전과정에 대한 해석적 접근)

  • Yoo, Hoseon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 1997
  • This paper presents an approximate analytical solution to a two-region one-dimensional model for the charging process of stratified thermal storage tanks with variable inlet temperature in the presence of momentum-induced mixing. Based on the superposition principle, an arbitrary-varying inlet temperature is decomposed into inherent discontinuous steps and continuous intervals approximated as a finite number of piecewise linear functions. This approximation allows the temperature of the upper perfectly-mixed layer to be expressed in terms of constant, linear and exponential functions with respect to time. Applying the Laplace transform technique to the model equation for the lower thermocline layer subject to each of three representative interfacial conditions yields compact-form solutions, a linear combination of which constitutes the final temperature profile. A systematic method for deriving solutions to the plug-flow problem having polynomial-type boundary conditions is also established. The effect of adiabatic exit boundary on solution behaviors proves to be negligible under the actual working conditions, which justifies the assumption of semi-infinite domain introduced in the solution procedure. Finally, the approximate solution is validated by comparing it with an exact solution obtained for a specific variation of inlet temperature. Excellent agreements between them suffice to show the necessity and utility of this work.

  • PDF

Altitude Effects on the Combustion of the Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.476-479
    • /
    • 2008
  • The combustion efficiency of the solid fuel ramjet is affected by the inlet air temperature. And this inlet air temperature is dependent on the flight Mach number and the environment air temperature. If the flight altitude is changeable, the inlet air temperature and the air density also vary. The performance efficiency is investigated with this variables related to the combustion efficiency.

  • PDF

Parametric Study on the Design of Turbocharger Journal Bearing - Aeration Effects

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2006
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure, then the friction and load of journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.