• Title/Summary/Keyword: Inlet port of air

Search Result 38, Processing Time 0.029 seconds

Convergent Investigation on Flow Analysis According to the Inlet Port of Air at Car (자동차에서의 공기의 유입구에 따른 유동해석에 관한 융합 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.159-164
    • /
    • 2020
  • In this study, the flow analysis of air in the inner side of vehicle due to the position on inlet port of air at car was carried out. Under the comfortable condition as the inlet port in which the air flows, it was possible to confirm that the inlets became the upper and middle sides or the forward side of the vehicle. If the air flow is not evenly distributed within the vehicle, the lower position of the vehicle is the lowest condition among all conditions. The results of this study will help to keep the inner state of the vehicle pleasant by adjusting the location of the inlet to suit the passenger's taste or situation. The design and analysis results of this study can be effectively applied at adjusting the location of the inlet at car. By applying the flow analysis according to the inlet port of air at car, this paper is seen as the convergence study that conforms to aesthetic design.

The Effects of Operational Factors On the Performance of Husk Separator (왕겨풍구의 성능(性能)에 영향(影響)을 미치는 작동요인(作動要因)에 관(關)한 연구(硏究))

  • Chang, Hyun Taik;Noh, Sang Ha;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 1984
  • Husk separator is an indispensable equipment in rice milling plants. However, any basic research on the designing and operating criteria of the husk separator have rarely been conducted in Korea. According to the survey results reported recently, grain loss occurs in the process of rice husk separation at custom rice milling plants in Korea and the performance of husk separator has also not been identified. With this regard this study was conducted with a typical commercial husk separator to investigate the effect of the operational factors such as feed rate, blower speed and opening ratio on the velocity distribution in the air duct and the performance of the separator. The results are summerized as follows: 1. The average wind velocity in the primary air duct increased linearly with the blower rpm and the size of air inlet port in both cases of double type and single type operations. 2. The coefficient of variation in the horizontal wind velocities in the primary air duct was the minimum when the opening ratio was 0.22 ($0.052m^2$ of air inlet port) in both cases of single type and double type operations regardless of the blower speeds used in this test. The average wind velocity at the upper part of air duct was greater by 2-5 m/s than the velocity at the bottom part in double type operation. In case of single type operation, however, the average velocity in the middle part was greater than the upper or bottom part when the opening ratio was greater than 0.74. 3. The relationship between the overall effectiveness of separation(Ed for double type and Es for single type) and the average wind velocity (Va) in the primary air duct was expressed in the following quadratic functions. $$Ed=-190.84+106.18Va-10.052Va^2$$ ($r^2$ = 0.97782) $$Es=-223.76+106.23Va-9.1935Va^2$$ ($r^2$ = 0.97029) The average wind velocity required to obtain the overall effectiveness of separation more than 80% ranged from 4.04 m/sec to 5.84 m/sec in case of double type operation, and from 4.70 m/sec to 6.20 m/sec in case of single type. 4. An optimum wind velocity can be obtained with an increase in the blower speed or the size of air inlet port as presented in Figure 8. There was a tendency that the faster the blower speed, the narrower the control range of the air inlet port. 5. The feed rates (1850kg/hr and 2100kg/hr) adopted in this experiment did not bring about a significant difference in both the overall effectiveness of separation and the power consumption. 6. The energy consumption increased cubically with the blower speed but linearly with the size of the air inlet port. On the basis of the results described in items 1, 3, and 6, it would be more economic to adjust the size of the air inlet port larger with a relatively low blower speed than to adjust the size smaller with a relatively high speed.

  • PDF

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

A Study on Heat Flow Characteristics during Hot Water Extraction Process (온수추출과정의 열유동 특성에 관한 연구)

  • 장영근;박정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.549-556
    • /
    • 2001
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a flow pattern in the storage tank, and a hot water extraction efficiency was analysed with respect to the variables dominating a extraction process. Experimental results show that the extraction efficiency is high in a low flow rate in case of using modified distributor I(MDI) as a outlet port type.

  • PDF

A study on the characteristics of gas flow in inlet port of 2 cycle engine (2사이클 기관 흡기 포오트의 가스 유동 특성에 관한 연구)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.725-730
    • /
    • 1987
  • An experimental study of the air flow through inlet pipe of reciprocating two-cycle engine was investigated under motored condition. Measurements of the two components of velocity, velocity fluctuation, and the other behavior of inlet flow have been obtained by laser Doppler anemometer system. The research engine comprised the cylinder head of a two-cycle engine which mounted on optical spacer with measuring window and glass inlet entry for laser anemometer measurement. A dual beam laser Doppler anemometer was used with conventional forward scattered method and comprised argon-ion laser, frequency shifter with Bragg cell module, and the signal processor. Measurements of mean velocity fluctuation of inlet flow for different engine speeds, measuring positions, and the changes in cylinder volume are investigated. The results presented show that the changes in engine speed is shown to be strongly influenced on the mean velocity of inlet air. The effect of measuring position and cylinder volume on the inlet velocity was also investigated for the inlet port entry and is shown to be small compared to the engine speed.

A Fracture Analysis on the Ceramic Dome with Different Geometry under Impact (충격을 받는 세라믹돔의 기하형상에 따른 파괴해석)

  • Kwon, Sun-Guk;Lee, Yung-Shin;Kim, Jae-Hoon;Lee, Jung-Hee;Yoon, Su-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.706-710
    • /
    • 2008
  • The experiment of dome port cover under shock impact is performed with shock tube. The dome port cover blocked intake air duct up from the solid propellant during air breathing vehicle speed reach Mach 2.0. When the air breathing vehicle reach Mach 2.0, the inlet cover is removed and the dome port cover is broken to pieces by detonator or pressure of inlet air. Thus the dome port cover not only must stand the pressure of combustion chamber but also easy to break from the RAM pressure. In this study, a fracture evaluation on the $Al_2O_3$ ceramic spherical dome and circular plate port under impact has been presented. Ceramic were supported by the rigid body and a couple of O-ring. The Mooney-Rivlin model have been used to describe behaviors of both O-ring. And spherical dome and circular plate fracture results of the LS-DYNA code using Johnson-Holmquist(JH-2) constitutive equation was compared.

  • PDF

A Study on Thermal Stratification Characteristics and Useful Rate of Hot Water in Thermal Storage Tank during Hot Water Extraction Process (온수 추출과정 동안 축열조 내의 열성층 특성 및 온수 이용률에 관한 연구)

  • 장영근;박정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.503-511
    • /
    • 2002
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a degree of stratification in the storage tank, and a useful rate of hot water was analysed with respect to the variables dominating a extraction process. Experimental results show that the degree of stratification and useful rate of hot water are all high in a low flow rate in case of using modified distributor I (MDI) as the outlet port type.

Optimization of Swirl Ratio of Intake Port in 11L LPLi Engine (11L급 LPLi방식 대형엔진의 흡기스월비 최적화 연구)

  • 이진욱;강건용;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.99-105
    • /
    • 2003
  • The configuration of intake port is a dominant factor of inlet air flow and mixture formation in an engine. In this study, as an available technology to optimum intake port, the flow box system using resine has been applied. So we presents a methodology for estimating inlet flow characteristics in this paper. This quantified experimental result shows good agreements with visualization data in a cylinder. We obtained the optimal value of swirl ratio and flow coefficient under steady flow rig test for new development of intake port for heavy-duty engine. From this results, the cylinder heat with a good evaluated swirl flow characteristics was developed and adapted for a 11L heavy-duty engine using the liquid phase LPG injection (LPLi) system. This .research expects to clarify major factor that make the intake port efficiently.

Parametric Study on the Design of Turbocharger Journal Bearing - Aeration Effects

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2006
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure, then the friction and load of journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.

Aeration Effects on the Performance of Turbocharger Journal Bearing under Constant Load Operating Condition (일정하중 운전조건 하에서 공기혼입이 터보챠져 저어널베이링의 성능에 미치는 영향)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.207-218
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure distribution, then the friction in a journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.