• Title/Summary/Keyword: Inlet nozzle

Search Result 277, Processing Time 0.024 seconds

A Study on the Performance Characteristics of Air Driven Gas Ejector (공기구동 기체이젝터의 성능특성에 관한 연구)

  • 홍영표;윤두호;김용모;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 1994
  • The gas jet pumps serve to preduce a vacuum or can be used as gas jet compressors. These are operated on the same principle as a steam jet vacuum pump : in the driving nozzle the pressure energy of the motive medium is converted into the kinetic energy. In the diffuser the driving jet mixes with the suction medium and the kinetic energy is reconverted into the pressure enegy. The application fields of gas jet ejectors are the evacuation of siphoning installations, the elevation of liquids, the production of vacuum filters, the vacuum supporting airlift system, the evacuation of the suction line of centrifugal pumps and the ventilation of the dangerous gases to the atmosphere. The performance of gas jet ejector is influenced strongly to velocity coefficient of motive nozzle, the distance between the motive outlet to the diffuser inlet and the dimensions of diffuser. This study is performed for the computer aided design of gas jet ejectors in future. Through the present experiments, it is known that the velocity coefficient of the motive air nozzle ranges from 0.91 to 0.95 and the maximum efficiency of gas jet ejector is 24.6%.

  • PDF

Cavitating Flow in Circular and Elliptical Nozzles (원형 노즐과 타원형 노즐에서 발생되는 캐비테이션 유동)

  • Ku, Kun-Woo;Hong, Jung-Goo;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1005-1012
    • /
    • 2011
  • The purpose of this study was to investigate the internal nozzle flow and cavitation characteristics numerically in both circular and elliptical nozzles. The program FLUENT 6.2 was used to perform the numerical simulation of the cavitating flow in the nozzles. A comparison was made between the cavitation shapes predicted numerically and those found experimentally in order to validate the numerical solution. This study showed that the cavitation in the circular nozzle had a cylindrical shape that was symmetrical with the nozzle axis. However, the cavitation in the elliptical nozzles had a horseshoe-like shape. In addition, the radial velocity distribution varied between the major and the minor axis planes when the working fluid was flowing into the inlet.

Novel Fabrication and Testing of a Bubble-Powered Micropump (새로운 기포동력 마이크로펌프 제작 및 실험)

  • Jung, Jung-Yeul;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1196-1200
    • /
    • 2004
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. In this study, a bubble-powered micropump was fabricated and tested. The micropump consists of two-parallel micro line heaters, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 400 ${\mu}m$ in depth pumping chamber. The two-parallel micro line heaters with 20 ${\mu}m-width$ and 200 ${\mu}m-length$ were fabricated to be embedded in the silicon dioxide layer of a wafer which serves as a base plate for the micropump. The pumping chamber, the pair of nozzle-diffuser unit and microchannels including the liquid inlet and outlet port were fabricated by etching through another silicon wafer. A glass wafer (thickness of $525{\pm}15$ ${\mu}m$) having two holes of inlet and outlet ports of liquid serve as upper plate of the pump. Finally the silicon wafer of the base plate, the silicon wafer of pumping chamber and the glass wafer were aligned and bonded (Si-Si bonding and anodic bonding). A sequential photograph of bubble nucleation, growth and collapse was visualized by CCD camera. Clearly liquid flow through the nozzle during the period of bubble growth and slight back flow of liquid at the end of collapsing period can be seen. The mass flow rate was found to be dependent on the duty ratio and the operation frequency. As duty ratio increases, flow rate decreases gradually when the duty ratio exceeds 60%. Also as the operation frequency increases, the flow rate of the micropump decreases slightly.

  • PDF

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.

Experimental study of turbulent flow in a scaled RPV model by PIV technology

  • Luguo Liu;Wenhai Qu;Yu Liu;Jinbiao Xiong;Songwei Li;Guangming Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2458-2473
    • /
    • 2024
  • The turbulent flow in reactor pressure vessel (RPV) of pressurized water reactor (PWR) is important for the flow rate distribution at core inlet. Thus, it is vital to study the turbulent flow phenomena in RPV. However, the complicated fluid channel consisted of inner structures of RPV will block or refract the laser sheet of particle image velocimetry (PIV). In this work, the matched index of refraction (MIR) of sodium iodide (NaI) solution and acrylic was applied to support optical path for flow field measurements by PIV in the 1/10th scaled-down RPV model. The experimental results show detailed velocity field at different locations inside the scaled-down RPV model. Some interesting phenomena are obtained, including the non-negligible counterflow at the corner of nozzle edge, the high downward flowing stream in downcomer, large vortices above vortex suppression plate in lower plenum. And the intensity of counterflow and the strength of vortices increase as inlet flow rate increasing. Finally, the case of asymmetry flow was also studied. The turbulent flow has different pattern compared with the case of symmetrical inlet flow rate, which may affect the uniformity of flow distribution at the core inlet.

Performance Improvement of Very Low Head Cross Flow Turbine with Inlet Open Duct (입구 개방형 덕트를 적용한 초저낙차 횡류수차의 성능향상)

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.30-39
    • /
    • 2014
  • The cross flow turbine is economical because of its simple structure. For remote rural region, there are needs for a more simple structure and very low head cross flow turbines. However, in this kind of locations, the water from upstream always flows into the turbine with some other materials such as sand and pebble. These materials will be damage to the runner blade and shorten the turbine lifespan. Therefore, there is a need to develop a new type of cross flow turbine for the remote rural region where there is availability of abundant resources. The new design of the cross flow turbine has an inlet open duct, without guide vane and nozzle to simplify the structure. However, the turbine with inlet open duct and very low head shows relatively low efficiency. Therefore, the purpose of this study is to optimize the shape of the turbine inlet to improve the efficiency, and investigate the internal flow of a very low head cross flow turbine. There are two steps to optimize the turbine inlet shape. Firstly, by changing the turbine open angle along with changing the turbine inlet open duct bottom line (IODBL) location to investigate the internal flow. Secondly, keeping the turbine IODBL location at the maximum efficiency achieved at the first step, and changing the turbine IODBL angle to improve the performance. The result shows that there is a 7.4% of efficiency improvement by optimizing turbine IODBL location (open angle), and there is 0.3% of efficiency improvement by optimizing the turbine IODBL angle.

Characteristics of Flow-Induced Noise in the Suction Nozzle of a Vacuum Cleaner with a Double-Blade Fan (이중 블레이드 팬이 장착된 진공청소기 브러쉬의 유동소음 특성)

  • Park, I-Sun;Sohn, Chae-Hoon;Oh, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.205-213
    • /
    • 2011
  • The characteristics of noise generation in the suction nozzle of a vacuum cleaner are analyzed numerically and experimentally. First, the flow resistance induced by each element in the suction nozzle of a vacuum cleaner with a double-blade rotary fan is investigated numerically and its relation with flow-induced noise and suction performance is examined in an anechoic room. The flow resistance and vorticity in the suction nozzle are calculated, and it is found that they are closely related to flow-induced noise and that the upper limit of noise reduction is only 4 dBA. This upper limit can be achieved by changing the design of the brush nozzle. Two methods for noise reduction by enlargement of flow-inlet area and by optimization of the number of blades are tested. Finally, the effects of each method are verified experimentally.

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

A Hydraulic and Feasibility Study of New Tower Internal in Gas Processing Plants

  • Choo Chang-upp
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • A new tower internal, which is called CSE, is presented. The CSE is composed of a nozzle perforated in its bottom along the entire periphery and equipped with a multi vane axial swirler at the inlet and hollow cylindrical separator at the outlet of the nozzle. According to the experimental work for obtaining the necessary hydraulic information of the CSE, which is used for preliminary design of a separation column, the CSE showed a stable operation over the wide rage of gas/liquid ratio. However, it caused large pressure drop due to the high gas velocity which should carry liquid droplets through the element. The high pressure drop may cause problems in energy recovery and the application of the CSE can be limited to the high pressure columns. Assuming that the tray efficiency of the CSE is the same with the existing separation columns, the results of the column design showed the size reduction of the column diameters by 30 to $40\%$ and investment cost saving, depending on operating conditions. The application of the CSE to separation column may also contribute to the de-bottlenecking the existing column.