• Title/Summary/Keyword: Inlet Resistance

Search Result 116, Processing Time 0.024 seconds

Analytic study on thermal management operating conditions of balance of 100kW fuel cell power plant for a fuel cell electric vehicle (100kW급 연료전지 열관리 시스템 실도로 운전조건 해석적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Cho, Choong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The objective of this study was to investigate performance characteristics of thermal management system(TMS) in a fuel cell electric vehicle with 100kW Fuel Cell(FC) system. In order to build up analytic modelling for TMS, each component was installed and tested under various operating conditions, such as water pump, radiator, 3-Way valve, COD heater, and FC stack etc. and as the results of them, correlations reflecting component's characteristics with flow rate, air velocity were developed. Developed analytic modelling was carried out under various operating conditions on the road. To verify modelling's accuracy, after prediction for optimum coolant flow rate was fulfilled under certain operating conditions, such as FC system, water pump speed, opening of 3-way valve, and pipe resistance, analytic and experimental values were compared and good agreement was shown. In order to predict cold-start operating performance for analytic modelling, coolant temperature variation was analyzed with $-20^{\circ}C$ ambient temperature and duration was predicted to rise in optimum temperature for FC. Because there is appropriate temperature difference between inlet and outlet of FC stack to operate FC system properly, related analysis was performed with respect to power consumption for TMS and heat rejection rate and performance map was depicted along with FC operating conditions.

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가)

  • Heo, So-Hyeon;Nam, Gwang-Sik;Jeong, Yeong-Seok;Kwon, Minho
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2022
  • Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.

A Study on Mechanical Properties and Applicability of CNT-Mixed Grout (CNT-Mixed grout의 역학적 특성 및 적용성 연구)

  • Kim, Seunghyun;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2022
  • In recent years due to the development of urban and underground space, the number of ground disasters is increasing, and it is also leading to social problems. To solve the problem, a grouting method is generally used. However, the grouting method has material (grout) limitations in permeability, gelation properties and tensile resistance. Therefore, research on grout materials mixed with fibers is actively carried out to improve the problems. However, in the actual ground injection process, many difficulties have been faced causing the blockage of the inlet port and the injection tube. In this study, 'CNT-mixed grout material' was developed using CNT powder that can reinforce the tensile strength of soils. The uniaxial compressive and tensile strength tests were performed to obtain the optimal content and mechanical properties of the CNT Powder-mixed grout. It was found that the optimal CNT powder content is 0.5% that gives the average maximum strength. A one-dimensional injection test and the bulb formation test were carried out, and it was identified that the injection rate and bulb form could be controlled by pressure and mixing ratio. Field application of the CNT-Mixed grout is simulated using numerical analysis of slopes, foundations, and tunnels reinforced in several types. The positive effect of reducing plastic ranges and settlements was confirmed.

Predicting Migration of a Heavy Metal in a Sandy Soil Using Time Domain Reflectometry (TDR을 이용한 사질토양에서의 중금속 이동 추정)

  • Dong-Ju Kim;Doo-Sung Baek;Min-Soo Park
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Recently, transport parameters of conservative solutes such as KCl in a porous medium have been successfully determined using time domain reflectometry (TDR) . This study was initiated to Investigate the applicability of TDR technique to monitoring the fate of a heavy metal ion in a sandy soil and the distribution of its concentration along travel distance with time. A column test was conducted in a laboratory that consists of monitoring both resident and flux concentrations of $ZnCl_2$in a sandy soil under a breakthrough condition. A tracer of $ZnCl_2$(10 g/L) was injected onto the top surface of the sample as pulse type as soon as a steady-state condition was achieved. Time-series measurements of resistance and electrical conductivity were performed at 10 cm and 20 cm of distances from the inlet boundary by horizontal-positioning of parallel TDR metallic rods and using an EC-meter for the effluent exiting the bottom boundary respectively. In addition. Zn ions of the effluent were analyzed by ICP-AES. Since the mode and position of concentration detected by TDR and effluent were different, comparison between ICP analysis and TDR-detected concentration was made by predicting flux concentration using CDE model accommodating a decay constant with the transport parameters obtained from the resident concentrations. The experimental results showed that the resident concentration resulted in earlier and higher peak than the flux concentration obtained by EC-meter, implying the homogeneity of the packed sandy soil. A close agreement was found between the predicted from the transport parameters obtained by TDR and the measured $ZnCl_2$concentration. This indicates that TDR technique can also be applied to monitoring heavy metal concentrations in the soil once that a decay constant is obtained for a given soil.

  • PDF

The Clinical Application and Results of Palliative Damus-Kaye-Stansel Procedure (고식적 Damus-Kaye-Stansel 술식의 임상적 적용 및 결과)

  • Lim, Hong-Gook;Kim, Soo-Jin;Kim, Woong-Han;Hwang, Seong-Wook;Lee, Cheul;Shinn, Sung-Ho;Yie, Kil-Soo;Lee, Jae-Woong;Lee, Chang-Ha
    • Journal of Chest Surgery
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Background: The Damus-Kaye-Stansel (DKS) procedure is a proximal MPA-ascending aorta anastomosis used to relieve systemic ventricular outflow tract obstructions (SVOTO) and pulmonary hypertension. The purpose of this study was to review the indications and outcomes of the DKS procedure, including the DKS pathway and semilunar valve function. Material and Method: A retrospective review of 28 patients who underwent a DKS procedure between May 1994 and April 2006 was performed. The median age at operation was 5.3 months ($13\;days{\sim}38.1\;months$) and body weight was 5.0 kg ($2.9{\sim}13.5\;kg$). Preoperative pressure gradients were $25.3{\pm}15.7\;mmHg$ ($10{\sim}60\;mmHg$). Eighteen patients underwent a preliminary pulmonary artery banding as an initial palliation. Preoperative main diagnoses were double outlet right ventricle in 9 patients, double inlet left ventricle with ventriculoarterial discordance in 6,. another functional univentricular heart in 5, Criss-cross heart in 4, complete atrioventricular septal defect in 3, and hypoplastic left heart variant in 1. DKS techniques included end-to-side anastomosis with patch augmentation in 14 patients, classical end-to-side anastomosis in 6, Lamberti method (double-barrel) in 3, and others in 5. The bidirectional cavopulmonary shunt and Fontan procedure were concomitantly performed in 6 and 2 patients, respectively. Result: There were 4 hospital deaths (14.3%), and 3 late deaths (12.5%) with a follow-up duration of $62.7{\pm}38.9$ months ($3.3{\sim}128.1$ months). Kaplan-Meier estimated actuarial survival was $71.9%{\pm}9.3%$ at 10 years. Multivariate analysis showed right ventricle type single ventricle (hazard ratio=13.960, p=0.004) and the DKS procedure as initial operation (hazard ratio=6.767, p=0.042) as significant mortality risk factors. Four patients underwent staged biventricular repair and 13 received Fontan completion. No SVOTO was detected after the procedure by either cardiac catheterization or echocardiography except in one patient. There was no semiulnar valve regurgitation (>Gr II) or semilunar valve-related reoperation, but one patient (3.6%) who underwent classical end-to-side anastomosis needed reoperation for pulmonary artery stenosis caused by compression of the enlarged DKS pathway. The freedom from reoperation for the DKS pathway and semilunar valve was 87.5% at 10 years after operation. Conclusion: The DKS procedure can improve the management of SVOTO, and facilitate the selected patients who are high risk for biventricular repair just after birth to undergo successful staged biventricular repair. Preliminary pulmonary artery banding is a safe and effective procedure that improves the likelihood of successful DKS by decreasing pulmonary vascular resistance. The long-term outcome of the DKS procedure for semilunar valve function, DKS pathway, and relief of SVOTO is satisfactory.

Mid-term results of IntracardiacLateral Tunnel Fontan Procedure in the Treatment of Patients with a Functional Single Ventricle (기능적 단심실 환자에 대한 심장내 외측통로 폰탄술식의 중기 수술성적)

  • 이정렬;김용진;노준량
    • Journal of Chest Surgery
    • /
    • v.31 no.5
    • /
    • pp.472-480
    • /
    • 1998
  • We reviewed the surgical results of intracardiac lateral tunnel Fontan procedure for the repair of functional single ventricles. Between 1990 and 1996, 104 patients underwent total cavopulmonary anastomosis. Patients' age and body weight averaged 35.9(range 10 to 173) months and 12.8(range 6.5 to 37.8) kg. Preoperative diagnoses included 18 tricuspid atresias and 53 double inlet ventricles with univentricular atrioventricular connection and 33 other complex lesions. Previous palliative operations were performed in 50 of these patients, including 37 systemic to pulmonary artery shunts, 13 pulmonary artery bandings, 15 surgical atrial septectomies, 2 arterial switch procedures, 2 resections of subaortic conus, 2 repairs of total anomalous pulmonary venous connection and 1 Damus-Stansel-Kaye procedure. In 19 patients bidirectional cavopulmonary shunt operation was performed before the Fontan procedure and in 1 patient a Kawashima procedure was required. Preoperative hemodynamics revealed a mean pulmonary artery pressure of 14.6(range 5 to 28) mmHg, a mean pulmonary vascular resistance of 2.2(range 0.4 to 6.9) wood-unit, a mean pulmonary to systemic flow ratio of 0.9(range 0.3 to 3.0), a mean ventricular end-diastolic pressure of 9.0 (range 3.0 to 21.0) mmHg, and a mean arterial oxygen saturation of 76.0(range 45.6 to 88.0)%. The operative procedure consisted of a longitudinal right atriotomy 2cm lateral to the terminal crest up to the right atrial auricle, followed by the creation of a lateral tunnel connecting the orifices of either the superior caval vein or the right atrial auricle to the inferior caval vein, using a Gore-Tex vascular graft with or without a fenestration. Concomitant procedures at the time of Fontan procedure included 22 pulmonary artery angioplasties, 21 atrial septectomies, 4 atrioventricular valve replacements or repairs, 4 corrections of anomalous pulmonary venous connection, and 3 permanent pacemaker implantations. In 31, a fenestration was created, and in 1 an adjustable communication was made in the lateral tunnel pathway. One lateral tunnel conversion was performed in a patient with recurrent intractable tachyarrhythmia 4 years after the initial atriopulmonary connection. Post-extubation hemodynamic data revealed a mean pulmonary artery pressure of 12.7(range 8 to 21) mmHg, a mean ventricular end-diastolic pressure of 7.6(range 4 to 12) mmHg, and a mean room-air arterial oxygen saturation of 89.9(range 68 to 100) %. The follow-up duration was, on average, 27(range 1 to 85) months. Post-Fontan complications included 11 prolonged pleural effusions, 8 arrhythmias, 9 chylothoraces, 5 of damage to the central nervous system, 5 infectious complications, and 4 of acute renal failure. Seven early(6.7%) and 5 late(4.8%) deaths occured. These results proved that the lateral tunnel Fontan procedure provided excellent hemodynamic improvements with acceptable mortality and morbidity for hearts with various types of functional single ventricle.

  • PDF