• Title/Summary/Keyword: Inlet Port

Search Result 103, Processing Time 0.027 seconds

A Study on the Application of FLO-2D Model for Analysis of Debris Flow Damage Area (토석류 피해지역 분석을 위한 FLO-2D 모형의 적용에 관한 연구)

  • Jo, Hang-Il;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.37-44
    • /
    • 2022
  • As the frequency of torrential rains and typhoons increases due to climate change, the frequency of occurrence of debris flow is also increasing. In particular, in the case of Kangwon-do, the occurrence of damage caused by mountain disasters is increasing as it has a topographical characteristic where the mountains and the coast are in contact. In order to analyze the flow characteristics in the sedimentary part of the debris flow, input data were constructed through numerical maps and field data, and a two-dimensional model, FLO-2D, was simulated. The damaged area was divided into the inflow part of the debris flow, the village center, and the vicinity of the port, and the flow center and flow velocity of the debris flow were simulated and compared with field survey data. As a result, the maximum flow depth was found to be 2.4 m at the debris flow inlet, 2.7 m at the center of the village, and 1.4 m at the port adjacent to the port so the results were similar when compared to the field survey. And in the case of the maximum flow velocity, it was calculated as 3.6 m/s at the debris flow inlet, 4.9 m/s in the center of the village and 1.2 m/s in the vicinity of the port, so It was confirmed that the maximum flow center occurred in the section where the maximum flow rate appeared.

Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model (저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석)

  • Kim, W.K.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning (저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해)

  • Jo, Wan Geun;Gwon, Gi Dong;Choe, Sang Jun;Song, Dong Ik
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether (Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향)

  • Bae, Choong-Sik;Jang, Jin-Young;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.

Flow Analyses for the Improvement of Uniform Distribution at LOx Manifold of a $30\;ton_f$ Full-scaled Combustor (30톤급 실물형 연소기 산화제 매니폴드 유동해석을 통한 유량 균일성 개선)

  • Kim, Hong-Jip;Kim, Seong-Ku;Kim, Jong-Kyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.16-23
    • /
    • 2008
  • Flow analyses have been performed to investigate the uniformity of propellant flow through the oxidizer manifold of a 30 tonf full-scaled combustor. Injectors were simulated as porous medium layers of equivalent pressure drops. The uniformity of oxidizer propellant has been analyzed for various diameters of holes in vertical/horizontal distributors and configurations of oxidizer inlet to propose an improved design solution. It has been proven that the mass flow uniformity were improved by adjusting the holes in vertical/horizontal distributors.

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

Analysis of Air Circulation in Oyster Mushroom Farm

  • Jeong, Won-Geun;Lim, Hack-Kyu;Kim, Tae-Han
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Oyster mushroom farm which could not meet optimum temperature range yields non-uniform sized, low quality products. Thus, this study, utilizing STAR CCM+, one of the computational fluid dynamics (CFD) programs, analyzed the impact of air circulation and temperature distribution. Methods: After we visited numerous mushroom farms, we measured the temperature at the discharge ports of heaters, fan capacity, and the locations of the air circulators in the farms. According to the data, most mushroom growers installed the heaters near the entrance and discharge ports of the heaters at the third growing bed on the same height as the heaters in the entrance. The temperature at the discharge port of heater was $1,26^{\circ}C$, and the fan capacity was 4,500 $m^3$/hr. The air circulator was placed in the center of the mushroom farm 50cm above the ground, and its capacity of inlet port was 1,100 $m^3$/hr and discharge port 1,600 $m^3$/hr. The mushroom farm was insulated. Results: According to the analysis of the temperature distribution in the vertical plane of the entrance side, no air circulation causes the high temperature zone of 296~299K at the discharge port of the heater to take up 34% of area while the operation of air circulators causes it to occupy only 9%. This means that not using air circulators leads to a concentration of high temperature at the discharge port near the entrance. In addition, with the results of the analysis of the temperature distribution in the vertical planes of the center, no air circulation causes the temperature zone of 295~298K at the discharge port of the heater to take up 48% of area while the operation of air circulators causes it to occupy 80%. This shows that the high outlet port temperature disseminated to the center. Conclusions: After ninety minute operation of both heater and air circulator, the interior temperature became stabilized in the mushroom farm. Air circulation made the high temperature at the discharge port disseminate to the center and exit in the farm and equalize the temperature distribution.

Wall Impingement Phenomena of a Fuel Spray Injected by an EFI Injector (EFI 인젝터에 의한 연료분무의 벽면충돌 특성)

  • Kim, Y.I.;ARAI, M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In a port fuel injection system of engine, a large part of fuel injected into an intake port adheres on its wall and inlet valve. Consequently, the wall impinging spray interaction might occur the generation of several harmful phenomena. There are uncontrollable mixture formation, an accidental backfire and unburned hydrocarbons. Therefore, it is important to analyze the fuel behavior during the spray-wall interaction. In this study, splash characteristics of impingement and reflecting or scattering behavior of droplets of fuel injected from EFI nozzle were studied experimentally. A test fuel used is LAWS and its physical characteristics are similar to the conventional gasoline except for the ignition point. Since the liquid film formed immediately after impinging on an impingement plate is unstable, it is easy to cause secondary disintegration. In addition, when the intermittently impingement on the impingement plate with LAWS, the splash ratio is around 0.6. If an injection period becomes longer, liquid film will become thick and the splash ratio will fall bout 10 percent. On the other hand, when the injection period of an intermittent spray is long, the same time lapse as a continuous spray is shown.

  • PDF

Numerical Study of the Effect of Head Shapes on the Flow Field in a Cylinder of Two-Stroke Engine (헤드 형상에 따른 2행정기관 실린더내의 유동장에 대한 수치해석적 연구)

  • Kang, D.W.;Yang, H.C.;Chae, S.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.48-57
    • /
    • 1994
  • The specific power output and thermal effeciency of any two-stroke engine are dependent on its scavenging behavior. Among the many factors which influence on the scavenging process, the cylinder head shape is one of the important factor. Hence in this study three different type models of cylinder head shape which are the cylindrical, the spherical and the arbitrary shape are studied to show the effects of the turbulent scavenging process in the cylinder with one inlet port, two side ports and one exhaust port. A modified version of KIVA-II which strip out of or add planes of cells across the mesh above the piston for flow simulation of two-stroke engine is used. The $k-{\varepsilon}$ turbulent model is used. The results show that the flow in a two-stroke engine cylinder of the spherical head shape among the three different type model is a desirable for efficient scavenging.

  • PDF