• 제목/요약/키워드: Inlet Head

검색결과 154건 처리시간 0.022초

Experimental Study on Adjustment of Inlet Nozzle Section to Flow Rate Variation for Darrieus-type Hydro-Turbine

  • Watanabe, Satoshi;Shimokawa, Kai;Furukawa, Akinori;Okuma, Kusuo;Matsushita, Daisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2012
  • A two dimensional Darrieus-type turbine has been proposed for the hydropower utilization of extra-low head less than 2m. In a practical use of Darrieus-type hydro-turbine, head and flow rate may be varied temporally and seasonally. Considering that the cost advantage is required for the low head hydro turbine system, the Darrieus turbine should be operated with high efficiency in the wider range of flow rate possibly by using an additional device with simpler mechanism. In the present paper, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed to obtain the preferable inlet velocity in low flow rate conditions. Effects of resulting spanwise partial inlet flow are investigated. Finally, an effective modification of inlet nozzle height over flow rate variation is shown.

원심펌프 임펠러 입구각도 변화에 따른 유동해석 (FLOW ANALYSIS OF THE IMPELLER WITH DIFFERENT INLET ANGLES IN THE CENTRIFUGAL PUMP)

  • 이성현;이동렬
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.58-63
    • /
    • 2016
  • This research is to investigate the performance analysis for efficient design with four different inlet angles of the centrifugal pump impeller. Assuming that the rotation speed and exit angle are fixed, Four cases of the centrifugal pumps were numerically analyzed using ANSYS FLUENT. According to the numerical results, head and pump efficiency at inlet angle of 20 degrees was highest. There is no big difference of efficiency at inlet angle of 20 degrees compared to the inlet angle 30 degrees. About 15% of efficiency at inlet angle of 20 degrees is higher than inlet angle of 40 degrees and 31% higher than inlet angle oof 50 degrees. Because there is liner functional relationship between speed and flow rate, suction flow rate at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.89%, inlet angle of 40 degrees as 13%, inlet angle of 50 as 28.4%. Head at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.4%, inlet angle of 40 degrees as 2.7%, inlet angle of 50 degrees as 3.2%. There should exist highest efficiency and also optimal design shape at inlet angle of 20 degrees.

Experimental and Numerical Investigations on Performances of Darriues-type Hydro Turbine with Inlet Nozzle

  • Matsushita, Daisuke;Tanaka, Kei;Watanabe, Satoshi;OKuma, Kusuo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.151-159
    • /
    • 2014
  • Low head hydropower is one of realistic renewable energies. The Darrieus-type hydro turbine with an inlet nozzle is available for such low head conditions because of its simple structure with easy maintenance. Experimental and numerical studies are carried out in order to examine the effects of gap distances between the runner pitch circle and two edges of inlet nozzle on turbine performances. By selecting narrower gaps of left and right edges, the performance could be improved. From the results of two dimensional numerical simulations, the relation between the performance and flow behaviors around the Darrieus blade are discussed to obtain the guideline of appropriate inlet nozzle design.

입구 개방형 덕트를 적용한 초저낙차 횡류수차의 성능향상 (Performance Improvement of Very Low Head Cross Flow Turbine with Inlet Open Duct)

  • 천쩐무;패트릭 마크 싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.30-39
    • /
    • 2014
  • The cross flow turbine is economical because of its simple structure. For remote rural region, there are needs for a more simple structure and very low head cross flow turbines. However, in this kind of locations, the water from upstream always flows into the turbine with some other materials such as sand and pebble. These materials will be damage to the runner blade and shorten the turbine lifespan. Therefore, there is a need to develop a new type of cross flow turbine for the remote rural region where there is availability of abundant resources. The new design of the cross flow turbine has an inlet open duct, without guide vane and nozzle to simplify the structure. However, the turbine with inlet open duct and very low head shows relatively low efficiency. Therefore, the purpose of this study is to optimize the shape of the turbine inlet to improve the efficiency, and investigate the internal flow of a very low head cross flow turbine. There are two steps to optimize the turbine inlet shape. Firstly, by changing the turbine open angle along with changing the turbine inlet open duct bottom line (IODBL) location to investigate the internal flow. Secondly, keeping the turbine IODBL location at the maximum efficiency achieved at the first step, and changing the turbine IODBL angle to improve the performance. The result shows that there is a 7.4% of efficiency improvement by optimizing turbine IODBL location (open angle), and there is 0.3% of efficiency improvement by optimizing the turbine IODBL angle.

엔진 배기매니폴드의 배기가스 누설 해석 (Leakage Analysis of the Exhaust Gas for the Engine Exhaust Manifold)

  • 최복록
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.160-165
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from that thermal expansions of the runners are restricted by inlet flange connected to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Therefore, due to the repetitions of thermal deformation, leakage problems could be occur between inlet flange and cylinder head. In this study, we obtained pressure distributions along gasket bead lines from the finite element analysis and compared to the test results. It shows a good agreement between numerical and experimental results.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

유한요소법에 의한 공기압축기 실린더 헤드의 방열에 관한 연구 (A Study on the Heat Disspation of Air Compressor Cylinder Head by the Finite Elements Method)

  • 이창식
    • 대한설비공학회지:설비저널
    • /
    • 제8권2호
    • /
    • pp.73-80
    • /
    • 1979
  • This study describes the conduction of heat in the discharge head of air compressor. It also gives a base for a finite elements analysis of two dimenional steady -state heat conduction in the cylinder head of air cooled type reciprocating compressor. Using a single cylinder compressor operated at a given speed, tests were made observing outside temperature, final pressure and discharge temperature of air in cylinder head. As a result, the following were obtained : (1) The rate oi heat flow from the inner surface of discharge head to outside wall reach 46. 328 kcal /h at a speed of 796rpm under the constant temperature of inlet air. (2) The compression work of air increase in accordance with temperature rise of inlet air.

  • PDF

저온기 육용계사의 적정 환기체계 구명

  • 이덕수;나재천;최희철;송준익;이상진;김형호
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2002년도 가을 학술발표논문집
    • /
    • pp.108-109
    • /
    • 2002
  • 환기체계별 내부환경 조사에서 입기관 입기 $\longrightarrow$ 강제 굴뚝배기방식이 NH$_3$ 농도 4.2ppm으로 윈치창 입기방식보다 유리하였고, 사육 성적에서는 입기관 입기 $\longrightarrow$ 강제 굴뚝배기방식이 일당 증체량 45.6g, 사료요구율 1.71, 수당 연료비 35.4원으로 다른 환기방식보다 우수하였으며, 입기관 길이별 풍속은 4m 가 1m 입기관보다 공기가 고루 퍼져가는 경향이었고 지점별 계사내 온도는 입기관 입기방식이 5.9 ~ 7.7$^{\circ}C$(평균 7.$0^{\circ}C$) 높아 연료절감 효과가 기대되었다.

  • PDF

Study for the Increase of Micro Regenerative Pump Head

  • Horiguchi, Hironori;Wakiya, Keisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.189-196
    • /
    • 2009
  • The effect of inlet and outlet blade angles on a micro regenerative pump head was examined in experiments. The pump head was little increased by changing the blade angles compared with the original pump with the inlet and outlet blade angles of 0 degree. The effect of the axial clearance between the impeller and the casing on the pump head was also examined. The head was increased largely by decreasing the axial clearance. The computation of the internal flow was performed to clarify the cause of the increase of the pump head due to the decrease of the clearance. The local flow rate in the casing decreased as the leakage flow rate through the axial clearance decreased due to the decrease of the clearance. It was found that the larger head in the smaller clearance was just caused by the smaller local flow rate in the casing. In the case of the smaller clearance, the smaller local flow rate caused the smaller circumferential velocity near the front and rear sides of the impeller. This caused the increase of the angular momentum in the casing and the head.

다상유동 분리기 모듈화를 위한 유입구 형상 설계에 관한 수치해석적 연구 (Numerical Study on the Inlet Head Configuration of Multi-Phase Separator for Modularization)

  • 홍창기;김윤제
    • 대한기계학회논문집B
    • /
    • 제41권9호
    • /
    • pp.571-577
    • /
    • 2017
  • 본 연구는 수치해석 기법을 활용하여 오일샌드 플랜트에 사용되는 다상유동분리기의 다양한 유입구 형상에 따른 효율 분석에 관한 연구이다. 본 연구에 사용된 유수분리기(FWKO, Free-water knockout)는 유량 $15,89m^3/d$(100 bbl/d), SOR(Steam-to-Oil Ratio) 3.5의 값을 가지며 Stokes 이론을 기반으로 설계되었다. 모듈화를 위하여 두 개의 유수분리기를 병렬 연결하였고 이에 따른 유입구 형상 최적화를 수행하였다. 유입구를 통해 유입되는 비투멘 에멀젼은 $150^{\circ}C$, 50 bar이며, API는 17의 값을 갖는다. 유수분리공정의 평균체류시간은 물과 오일이 95% 분리되는 시간으로 정의하였다. 다상유동의 밀도차에 의한 중력분리과정을 모사하기 위하여 유한체적법(VOF, Volume Of Fluid)과 상차분모델(DPM, Discrete Phase Model)을 조합하여 활용하였으며 준과도(Pseudo-transient) 해석기법을 활용하였다.