• Title/Summary/Keyword: Inlet & outlet temperature

Search Result 358, Processing Time 0.183 seconds

Environmental Evaluation of Sediment Quality for Small Scale Marine Ranch around the Gunsan Coastal Areas (군산해역에 있어서 소규모 바다목장화를 위한 해양저질 환경 평가)

  • Kim, Jong-Hwa;Kim, Jong-Kyu;Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.508-519
    • /
    • 2008
  • Hot air drying is a method that let moistures evaporate by heat exchange between heating air and dry target. This way is dominating more than about 70% of dryers that the use extent is wide fairly, and is established in domestic than dryer that use conduction or radiation etc. Most of research about drying had been emphasized in size of device through analysis for these dry phenomenon plain, heating topology, and aspect of form and so on by dry target's special quality, and research about device development or waste heat withdrawal technology in energy utilization efficiency side is slight real condition. Therefore, in this study, Investigated numerically about thermal efficiency elevation that is leaned against as that change the temperature of inlet and outlet in heat exchanger of the hot air drying tower.

Pressure Loss and Forced Convective Heat Transfer in an Annulus Filled with Aluminum Foam (발포 알루미늄이 삽입된 환형관에서의 압력손실 및 강제대류 열전달)

  • Noh Joo-Suk;Lee Kye-Bock;Lee Chung-Gu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.855-862
    • /
    • 2005
  • An experimental investigation has been carried out for aluminum foam heat sink inserted into the annulus to examine the feasibility as a heat sink for high performance forced water cooling in the annulus. The local wall temperature distribution, inlet and outlet pressures and temperatures, and heat transfer coefficients were measured for heat flux of 13.6, 18.9, 25.1, 31.4 $kw/m^2$ and Reynolds number ranged from 120 to 2000. Experimental results show that the friction factor is higher than clear annulus without aluminum foam, while the significant augmentation in Nu is obtained. This technique can be used for the compactness of the heat exchanger.

Current Status in U.S. Greenhouse Production and Newly Designed Naturally Ventilated Greenhouse in America

  • Lee, In-Bok;Sase, Sadanori;Short, Ted H.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.122-125
    • /
    • 1999
  • Ventilation is the primary method of controlling greenhouse air temperature, relative humidity, and carbon dioxide concentration. Two types of ventilation systems that are normally used are natural and fan. While fan ventilation is typically achieved with one wall as an inlet and the opposite wall as a fan outlet, natural ventilation is generally achieved by air exchanges that occur through multiple controlled openings due to natural pressure variations inside and outside the greenhouse. (omitted)

  • PDF

Flow Control for High Pressure Gas by using a Solenoid Valve (솔레노이드 밸브를 이용한 고압가스의 유량제어)

  • Sim Han-sub;Lee Chi-woo;Kim Nam-kyung;Ahn Kook-chan;Namkoong Chai-kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.156-161
    • /
    • 2005
  • Dynamic flow characteristics of a solenoid valve are affected by pressure difference in inlet and outlet of orifice, gas temperature, and supply voltage of a coil. In this paper, the dynamic flow characteristics for deviations of various conditions are studied Static and dynamic flow for variation on-time of a solenoid valve open signal are measured in basic bench test. The solenoid valve is applied to a compressed natural gas(CNG) engine test for validation of flow control performance. The experimental results show that flow of high pressure gas can controlled precisely by using a solenoid valve.

  • PDF

Cooling characteristics of a Liquid cooler Using Thermoeletric Module (열전소자를 이용한 액체 냉각기의 냉각열전달 특성)

  • Park, Min-Young;Lee, Geun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.197-202
    • /
    • 2007
  • In this study, the cooling characteristics of a liquid cooler using thermoelectric module was experimentally investigated. The experiment was conducted for various inner structures of liquid cooler (4 cases), hot fluid flow rates (0.15-0.25 L/min), number of T.E module (2, 4, 6 set), and the cooling water flow rates (200-600 cc/min) for both parallel and counter flow types. Among the results, better cooling performance geometry was selected. And experiment was also carried out to examine further enhancement of cooling performance by inserting coils (pitches: 0.2, 3, 6 mm) into the hot-fluid channel. Present results showed that the short serpentine type(case2) indicated the best cooling performance. In the case of coil pitch of 3 mm, the best cooling performance was shown, more than 10% increase of the inlet and outlet temperature difference, compared with the case of the cooler without coil. Consequently, the inserted coil pitch should be properly selected to improve cooling performance.

  • PDF

Turbine Design for Turbo-compound System to Recover Exhaust Gas Energy Using 1-D Mean Line Flow Model (1-D Mean Line Flow Model을 이용한 엔진 배기에너지 회수를 위한 터보컴파운드 시스템용 터빈 설계)

  • Jang, Jinyoung;Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • The aim of this study was to find the initial design value of turbine blade for electrical type turbocompound system generating 10 kW. Turbocompound is one of the waste heat recovery system applying to internal combustion engine to recover exhaust gas energy that was about 30 % of total input energy. To design the turbine blade, 1-D mean line flow model was used. Exhaust gas temperature, pressure, flow rate and turbine rotating speed was fixed as primary boundary conditions. The velocity triangles was defined and used to determine the rotor inlet radius and width, the rotor outlet radius at shroud and radius at hub, the rotor flow angles and the number of blades.

Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water - (지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.128-137
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger by using the parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. 0247164, offered by Korean Intellectual property Office). The trial manufactures were made from Aloo-heat which was 600mm, 700mm length respectively, and It were welded to the end "U" type in order to direct flow of the underground water. The performance test was carried out under the condition of open space and room temperature with the change of flow rate of the underground water and air. The results are as follows. 1. The trial manufactures had convection heat value from 33 to 156 W/m2℃, and It was coincided with design assumption. 2. The amount of energy transfer was increased with the increment of the area of heat transfer, the air flow, the gap of temperature inlet & outlet the underground water and the air. 3. The heat value was 6,825W when the air flow was 6,000m3/h and the gap of temperature between inlet and outlet of the underground water was 6℃, and It dropped from 25.8℃ to 23.2℃(-2.6℃ difference). The convection heat value was 88.5W/m2℃. 4. The heat value was 2.625W when the air flow was 4,000m3/h and the gap of temperature between inlet and outlet the underground water was 2℃, and It dropped from 27℃ to 22.5℃(-4.5℃ difference). The convection heat value was 33.6W/m2℃. 5. Correlation values(R2) of the testing heat values of the trial manufacture type I, II, and III were 0.9141, 0.8935, and 0.9323 respectively, and correlation values(R2) of the amount of the air flow 6,000m3/h, 5,000m3/h, 4,000m3/h were 0.9513, 0.9414, and 0.9003 respectively.

Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles (배플과 관군간의 적정 누설유동을 이용한 쉘-관 열교환기의 성능향상)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researcher's finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC (용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독)

  • Moon, Hyeung-Dae;Kim, Joon-Hee;Ha, Heung Yong;Lim, Tae-Hoon;Hong, Sung-Ahn;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.754-760
    • /
    • 1999
  • The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and $H_2$ chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses.

  • PDF

Flow Visualization and Calculation at the Outlet of Propellant Tank Pressurizing Gas Injector (추진제탱크 가압용 인젝터 출구에서의 유동가시화 및 해석)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Kwon, Ki-Jung;Chung, Yong-Cahp
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Propellant tank pressurizing gas injector is used in the pressurization system of liquid propellant rocket to reduce incoming gas velocity and distribute the gas in the tank. Temperature distribution in the propellant tank ullage is varied according to the gas injector shape, and it has influence on the required pressurant gas and thermal phenomena in the tank. In this paper, diffuser type gas injector was studied to make the ullage have stratified temperature distribution. Injected gas flow at the outlet of prototype diffuser was visulized using particle image velocimetry method and it was compared with the results of calculation. Calculation was well agreed with measurement and was used as an inlet condition of propellant tank ullage calculation.