• Title/Summary/Keyword: Ink jet

Search Result 241, Processing Time 0.042 seconds

The analysis of bulging phenomenon for ink-jet printed silver inks (잉크젯 프린팅 된 실버잉크의 뭉침 현상에 대한 해석)

  • Kim, Myong-Ki;Shin, Kwon-Yong;Hwang, Jun-Young;Kang, Kyung-Tae;Kang, Heui-Seok;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1525_1526
    • /
    • 2009
  • In this paper, we have studied the bulging phenomenon of ink-jet printed silver lines. The used silver inks are DGP-40LT-15C and DGH-55HTG of Advanced Nano Product (ANP) Company. We investigated the behavior of bulging by changing the polarity of the inks, the surface energy of substrate and droplet spacing in printing. The contact angle of the polar inks increased much more sensitively than the nonpolar ink as the surface energy of the substrate increases. In the case of the nonpolar ink, the bulging phenomenon occurred seriously as the droplet spacing decreased at the constant surface energy.

  • PDF

Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells (Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Ki-Wan;Shin, Myoung-Sun;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

Ink Jet Printing of Functional Materials

  • Canisius, Johannes;Brookes, Paul;Heckmeier, Michael;James, Mark;Mueller, David;Patterson, Katie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1121-1124
    • /
    • 2007
  • Ink jet printing has been targeted as a key technology for OLED, TFT backplane and other organic semiconductor device fabrication. This presentation will concentrate on aspects of the IJ process, formulation design, jetting performance, interaction with the substrate and resultant printed device performance.

  • PDF

Precision Industrial Ink Jet Printing Technology for Full Color PLED Display Manufacturing

  • Edwards, Chuck;Bennett, Richard;Lee, Jueng-Gil;Silz, Kenneth
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.141-143
    • /
    • 2002
  • Litrex Ink Jet equipment offers prospect for reliable and low cost manufacturing process for PLED technology. The design concept of 140P system that we are developing meets requirement of process/equipment for PLED manufacturing line in terms of higher mechanical accuracy, in-line monitoring system of print head, high precision of process capability, reasonable through-put, high reliability/easier maintenance and no particle generation.

  • PDF

Effect of microstructure of surface glaze on printability of ink-jet printing ceramic tile (표면 유약 미세구조가 잉크젯 프린팅 도자타일의 인쇄적성에 미치는 효과)

  • Lee, Ji-Hyeon;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • Ceramic tiles, which were manufactured through high-temperature firing process at over $1000^{\circ}C$, are widely used as interior and exterior materials for building construction due to their excellent durability and aesthetic of surface glaze. In recent years, the introduction of digital ink-jet printing in ceramic tiles for architectural use has been rapidly proceeding, and studies on the materials such as ceramic ink, ceramic pigment, glaze have been actively conducted. In this study, the effect of microstructure change of surface glaze on the printing properties of ceramic inks was investigated by micronization of kaolin, which is the raw material of surface glaze. Black ceramic ink was used for ink-jet printing on the surface glaze of ceramic tile to evaluate the printability by measuring the size and roundness of the printed ink dot. The relationship between microstructure change of surface glaze and printability of ceramic ink was also investigated by analyzing the surface roughness and internal micropore distribution of surface glaze.

Fabrication of Silver Micro Lines by Ink-Jet Method (잉크젯 기법을 이용한 은 미세라인 형성)

  • Byun, Jong-Hoon;Seo, Dong-Soo;Choi, Yuungmin;Chang, Hyunju;Kong, Ki-Jeong;Lee, Jung-O;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.788-791
    • /
    • 2004
  • We have studied the fabrication of silver micro lines using the silver nano sol on ITO substrate by an ink-jet method. The average particles size of $10wt\%$ silver nano sol synthesized with polyelectrolytes was smaller than 10 nm. The pattern formation of silver nano sol on the substrate closely related with the contact angle of the silver nano sol. The dot shaped of silver nano sol on bare ITO substrate was formed due to the high contact angle of silver nano sol. When ITO substrates was treated with 100 ppm polyethylenimine for silver nano sol patterning, fine silver micro lines of $60{\sim}100{\mu}m$ width was fabricated by ink-jet method.

Preparation of Ultra-Thin Transparent TiO2 Coated Film by Ink-Jet Printing Method (잉크젯 프린팅을 이용한 초박막 투명 TiO2 코팅층 제조)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Lee, Nam-Hee;Guo, Yupeng;Lee, Won-Jae;Park, Kyeong-Soon;Kim, Sun-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.190-196
    • /
    • 2007
  • Dye sensitized solar cells(DSSC) are the most promising future energy resource due to their high energy efficiency, low production cost, and simple manufacturing process. But one problem in DSSC is short life time compared to silicon solar cells. This problem occurred from photocatalytic degradation of dye material by nanometer sized $TiO_2$ particles. To prevent dye degradation as well as to increase its life time, the transparent coating film is needed for UV blocking. In this study, we synthesized nanometer sized $TiO_2$ particles in sols by increasing its internal pressure up to 200 bar in autoclave at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several nm to 30 nm. Synthesized $TiO_2$ sols were coated on the backside of fluorine doped tin oxide(FTO) glass by ink jet printing method. With increasing coating thickness by repeated ink jet coating, the absorbance of UV region (under 400 nm) also increases reasonably. Decomposition test of titania powders dispersed in 0.1 mM amaranth solution covered with $TiO_2$ coating glass shows more stable dye properties under UV irradiation, compared to that with as-received FTO glass.