Printing and Trimming Embedded Passives Using DOD lnk Jet Technology

대표이사 **김 석 순** ((주)유니넷)

Printing and Trimming Embedded Passives using DOD Ink Jet Technology

김석순

Seogsoon Kim

UniJet Co., Ltd.

and

Virang Shah

MicroFab Technologies Inc.

E-mail: sgsnkim@hanmail.net

April 9, 2003

弁以焚

Agenda

- Background on Ink Jet Technology
- Equipment/Print Heads
- Industrial Applications of Ink Jet Technology
- Trends of Embedded Passives
- Embedded Resistor Printing
- Embedded Resistor Trimming
- Cost Analysis
- Interface Reliability Results
- Other Passive Elements
- Conclusions

弁り使

Continuous vs. DOD Ink-Jet

Continuous Ink-Jet Technology

Demand Ink-Jet Technology

Ink-Jet Technology - Advantages

- High Precision Deposition
- Non-contact Printing
- Data Driven Digital Process
- Flexible Manufacturing Process
 - Lot size of 1
 - No tooling
 - Rapid Change Over
 - Multiple Heads
 - Different Materials
- Low Cost
- Environmentally Friendly

5. 计契 ** :***

- 42 -

Ink Jet Technology- Advantages

- Accurate volume control of Droplet
 - Control ball size up to ± 2%
- Fine Pitch (< 50μm) and Small Ball Size(20 μm)
- Direct-write of materials
- Wide range of materials
 - Ink, Paste, Wax, metals, polymers, fluxes, Slurries, ...
 - Wide operating temperature range (0-370 °C)
- Wide range of resolutions
 - $15-120\mu m$ drops + N drops per spot
- Wide range of rates
 - 1Hz 1MHz

11 便 : : : : : : :

::::

_

Jetting: Fluid Properties Requirements

- Newtonian
 - Visco-elastic behavior undesirable
- Viscosity
 - 2-40 cP
- Surface Tension
 - 20-70 dynes/cm
- Particle Laden Fluids
 - particle size < 5 μm; ideal nanoparticles
 - stable dispersion required

Single Jet Devices

Room Temperature Printheads

High Temperature Printhead

7

Multi-channel Array Printhead-cont.

Micro fabricated structures 170um pitch

10-fluid printhead

120 channel printhead with onboard drive electronics

Polymer orifice array, 170um pitch

1 1

Printhead in operation

新日型

유니켓 :: ::::

jetlab® Printing Platform

- High Accuracy and repeatability
- Ideal prototyping and process development

유니렛 : : : : : : :

9

jetlab® Upgrade

511型 11:11

Jetlab® II - Table Top Printer

- Smaller foot print
- Similar capabilities
- Ideal for development of processes and materials in laboratories

分Ⅰ列

1

Industrial Applications of Ink Jet Technology

Roadmap of Ink Jet Technology

Trends of Embedded Passives

- Applying the various materials
 Resistors: MacDermid Ni/P, Dupont LaB₆, Polymer Paste
 Capacitors: 3M C-ply, Dupont BaTiO₃
- Producing the various prototypes with embedded passives
 Nortel Emulator: 49 buried resistors and 29 buried capacitors
 Delphi Emulator: 205 buried resistors and 25 buried capacitors
 HP Emulator: replaced 44% of decoupling capacitors
- Developing Embedded PCB Manufacturing Technique MacDermid, Merix, CORETEC, E TOUCH, and etc
- Expecting the embedded passives products at the market in 2004.
 Consistency of Product, Change of Resistor Value in Lamination,
 Material Handling (Equipment), Design Tool, & Productivity,

14

Printed Embedded Resistors

- Polyimide resistors
- Resistor size: 5-55 mils (0.125-1.375 mm)
- 125, 250 and 500 μm Cu conductors

#11型 ::::::

15

Printed Embedded Resistor-cont.

A Test Vehicle showing printed resistors of different aspect ratios

Printed UV-Curable Resistors

A Test Vehicle Printed with Nanotube containing Resistor Ink

17

Ink Jet Printing and Laser Trimming

Complementary

- IJ printing lowers the resistance of embedded resistors by adding conductive material.
- Automated rework of fabrication and laser trim defects.

 Laser trimming increases the resistance by taking material out.

유니햇

Option 1. Ni/P Plated/ Ceramic Resistors ESI Laser Trim Machine Itest Laser Trim Print Clear Overcoat

유니켓

19

Embedded Resistor Trimming

- Ni/P plated resistors trimmed using inherently conductive polymer
- 12"x18" (300mmx450 mm) four-up PWB inner layer panel
- Demonstrated trim down: up to 35%
- Resistor size trimmed
 - 10 mil 330 mil

弁リ列

Embedded Resistor Trimming Results-Initially

A portion of Ni/P plated Test Vehicle inner layer trimmed down using ICP and Ink jet printing

Trimming Target: 40 ohm/square

Size	Before Trimming		After Triming		
mil	Average	Std Dev	Average	Std Dev	
320X170	51.4	8.1	38.7	5.8	
160X170	54.4	11.4	42.2	9.6	
80X170	53.9	9.3	40.9	9.1	
40X170	53.7	9.3	38.9	7.2	
20X170	55.7	12.0	40.4	9.4	
10X170	53.9	6.3	42.8	9.5	

유니햇 ::::::::

21

Embedded Resistor Trimming Results

After Optimizing Print Process

TV-2R Inner Layer-2					
Resistor	Before Trimming		After Triming		
Size	Average Std Dev		Average	Std Dev	
320X90	30.0	0.2	26.8	0.8	
160X90	30.2	0.4	26.5	0.5	
80X90	29.9	0.8	26.2	1.5	
40X90	30.6	0.7	25.9	0.9	
20X90	32.0	0.7	26.0	1.1	
10X90	31.7	1.0	25.0	0.9	

弁リ契

Embedded Resistor Trimming Results

After Optimizing Print Process

TV-2R Inner Layer-2					
Resistor	Before Trimming		After Triming		
Size	Average Std Dev		Average	Std Dev	
320X50	25.8	0.3	24.5	0.6	
160X50	25.6 0.6		24.8	0.3	
80X50	25.7	0.5	24.4	0.7	
40X50	26.7	0.5	24.8	1.1	
20X50	28.3	0.6	24.5	0.8	
10X50	29.2	1.3	24.4	0.9	

弁**니**列

23

Embedded Resistor Trimming Results

弁**니**製

Temperature/Humidity Test Results

Boards with NO Ink Jet Trimming

유니햇

25

Temperature/Humidity Test Results

Boards with Ink Jet Trimming

Emulator Trimming

27

Emulator Trim Results

Emulator Trim Results (N=6)

1 drop per spot; Drop Pitch 50 micron in both X and Y print directions

Resistor Size (mils)	Average (ohm/sq)	Standard Deviation	Average (Ohm/sq)	Standard Deviation
40 x 20	37.0	1.8	33.2	2.7
50 x 20	35.7	1.2	30.7	2.7
120 x 20	39.8	1.7	32.9	2.4
220 x 10	32.8	4.5	27.1	2.4

弁以契

Trim Variables

Optimum <u>curing temperature and time</u> key to resistor rework process in addition to the <u>thickness of the conductive polymer.</u>

Variables for Optin	num Tr	imming	of Ni/I	P Plate	d Resis	stors	
Print Variables							ļ
Pitch in X (μm)	30	40	50	60	70	100	Vary
Pitch in Y (µm)	30	40	50	60	70	100	Vary
Number of drops per Spot	1	2	3	4			Fixed
Drop Size	50	60					Fixed
Number of print passes	1	2	3	4			Fixed
Cure Variables							
Temperature(℃)	150	160	170				Fixed
Time (secs)	30	15	10				Fixed

유니헷 :: ::::

29

Embedded Resistor Trimming Guideline

Guideline for Trimming Resistors Using Conductive Polymer

Drop Pitch in X and Y Directions of Printing

유니잿

Embedded Resistor Trimming Guideline-cont.

% Change in Resistance vs. Number of Passes
Drop spacing X=40 um and Y=50 um, 1 drop per spot

Number of Print Passes

유니켓

31

Cost Analysis

Ink Jet Trimming

- Automated process
- Less scrap
- Low cost
- Reliable
- Repeatable

Courtesy: CALCE

弁リザ

Cost Analysis-cont.

Storage Tek Fiber Channel Board

0.1% Design Tolerance; No thickness variation

∯山製 ∷ ∷

Courtesy: CALCE

33

Cost Analysis-cont.

Storage Tek Fiber Channel Board

10% Design Tolerance; No thickness variation

유니잿

Courtesy: CALCE

Interface Reliability Test Results

Electron-Beam Moire Test

Center of Specimen U-Field Image

Courtesy: NIST, Boulder

35

Center of Specimen, -55 ℃ U-Field Image

유니햇 :: ;;;;

Courtesy: NIST, Boulder

유니켓

Courtesy: NIST, Boulder

37

Center of Specimen, 25 ℃, End-of-test U-Field Image

Courtesy: NIST, Boulder

DISPLACEMENT MEASUREMENTS FROM THE RESISTOR

■ AT -55, 125 , AND 25 °C end-of-test

CYCLE 1

(slope = normal strain)

Thickness Measurement

Printed Conductive Polymer

弁り製

Other Passive Elements -cont. **Dielectrics-Capacitor**

 Disk drive head component with UV-cure epoxy printed over 50um wide gold leads

41

Other Passive Elements

conductor and Ferrite - Inductor

Ferrite nanoparticle layer

250µm Silver lines printed on ferrite

Gold lines printed on FR-4; <200°C cure

유니젯

Other Passive Elements

Capacitor and Inductor

Inductor

43

SolderJet[™] Drop Formation Drop Size Modulation 60um to 110 um

유니켓 :: ::::

Microprocessor test vehicle (60um; 1440 sites)

45

Solder Jet™ Small Droplet and Tower Printing

 $24\mu m$ bumps **on** $35\mu m$ centers

 24μ m towers

谷口型

Printed Solder Interconnects *MEMS & CSP Applications*

Printed Solder Columns

60µm towers

3-D structure, 60µm feature size

 $24\mu m$ towers

弁り気

47

Conclusions

- Successful demonstration of printing and trimming of embedded resistors using conductive polymers
- Ink jet trimming of embedded resistors a reliable and repeatable process. High speed and environmental test results excellent.
- Ink jet printing of capacitors and inductors feasible with availability of suitable materials for conductors and dielectric.
- Suited for industrial production as well as prototyping.
- Seeking partners to take this technology to the next step.

弁リ型 :: :::::