• Title/Summary/Keyword: Injured Skeletal Muscle

Search Result 9, Processing Time 0.026 seconds

Visualization of the physical characteristics of collective myoblast migration upon skeletal muscle injury and regeneration environment (골격근 손상 및 재생 환경에서의 근육 세포 군집 이동의 물리적 특성 가시화)

  • Kwon, Tae Yoon;Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Skeletal muscle tissues feature cellular heterogeneity, including differentiated myofibers, myoblasts, and satellite cells. Thanks to the presence of undifferentiated myoblasts and satellite cells, skeletal muscle tissues can self-regenerate after injury. In skeletal muscle regeneration, the collective motions among these cell types must play a significant role, but little is known about the dynamic collective behavior during the regeneration. In this study, we constructed in vitro platform to visualize the migration behavior of skeletal muscle cells in specific conditions that mimic the biochemical environment of injured skeletal muscles. We then visualized the spatiotemporal distribution of stresses arising from the differential collectiveness in the cellular clusters under different conditions. From these analyses, we identified that the heterogeneous population of muscle cells exhibited distinct collective migration patterns in the injury-mimicking condition, suggesting selective activation of a specific cell type by the biochemical cues from the injured skeletal muscles.

Activation of IL-1β, IGF-1 and IGF-2 in Injured Rat Skeletal Muscle by Low Power He-Ne IR Laser and Electrical Stimulation (저출력레이저와 전기자극에 의한 골격근 손상 흰쥐의 IL-1β, IGF-1, IGF-2 활성)

  • Kim, Jong-Soon;Rho, Min-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.251-262
    • /
    • 2008
  • In this study we investigated the effects of physical therapeutic intervention through electromyography, ultrasonographic imaging and changes of the IL-$1{\beta}$, IGF-1 and IGF-2 in skeletal muscle of rats injured experimentally. The twenty Sprague-Dawley male rats were randomly divided into the 4 groups: a normal, a control, a low power laser and a neuromuscular electrical stimulation group. Abnormal spontaneous activities had not been shown, both in normal and skeletal muscle injured rats. The maximum diameter of the calf muscle was significantly increased in the low power laser and neuromuscular electrical stimulation groups compared with control group. The level of the serum IL-$1{\beta}$ was more decreased in the low power laser and neuromuscular electrical stimulation groups than that of control group. The activation level of the IGF-1 and the IGF-2 were significantly higher in the control, low power laser and neuromuscular electrical stimulation groups than that of normal group. However, there was no statistically significant difference among the control, low power laser and neuromuscular electrical stimulation groups.

Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy

  • Ji-Soo Jeong;Jeong-Won Kim;Jin-Hwa Kim;Chang-Yeop Kim;Je-Won Ko;Tae-Won Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.52-58
    • /
    • 2024
  • Background: Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in in vivo and in vitro. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated. Methods: We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation. Results: KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis. Conclusion: Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.

microRNA for determining the age-related myogenic capabilities of skeletal muscle

  • Lee, Kwang-Pyo;Shin, Yeo Jin;Kwon, Ki-Sun
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.595-596
    • /
    • 2015
  • Skeletal muscle exhibits a loss of muscle mass and function with age. Decreased regenerative potential of muscle stem/progenitor cells is a major underlying cause of sarcopenia. We analyzed microRNAs (miRNA) that are differentially expressed in young and old myoblasts, to identify novel intrinsic factors that play a degenerative role in aged skeletal muscle. miR-431, one of decreasing miRNAs in old myoblasts, improved the myogenic differentiation when overexpressed in old myoblast, but suppressed their myogenic capability in knockdowned young myoblasts. We found that miR-431 directly binds to 3` untranslated regions (UTR) of Smad4 mRNA, and decreases its expression. Given that SMAD4 is one of the downstream effectors of TGF-β, a well-known degenerative signaling pathway in myogenesis, the decreased miR-431 in old myoblast causes SMAD4 elevation, thus resulting in defective myogenesis. Exogenous expression of miR-431 greatly improved the muscle regeneration in the cardiotoxin-injured hindlimb muscle of old mice by reducing SMAD4 levels. Since the miR-431 seed sequence is conserved in human SMAD4 3'UTR, miR-431 regulates the myogenic capacity of human skeletal myoblasts in the same manner. Our results suggest that age-associated miR-431 is required for the maintenance of the myogenic capability in myoblasts, thus underscoring its potential as a therapeutic target to slow down muscle aging.

The Effect of GaAlAs Laser Irradiation on VEGF Expression in Muscle Contusion of Rats (GaAlAs 레이저 조사가 근타박상이 유발된 흰쥐 골격근내 혈관내피성장인자 발현에 미치는 영향)

  • Kim Souk-Boum;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.16-44
    • /
    • 2003
  • Skeletal muscle regeneration is a vital process for various muscle myopathies and muscular adaptation to physiological overload. Angiogenesis is the key event in the process of muscle regeneration, and vascular endothelial growth factor(VEGF) plays an important role in it. The purpose of this study was to evaluate the effect of GaAlAs(830nm) laser and immunoreactivity of VEGF on angiogenesis after muscle contusion injury. Muscle contusion injury was induced in the triceps surae muscle by dropping a metal bead(31.4g). GaAlAs laser irradiation(power 20 mW, frequency 2000 Hz, treatment time 15 min) was applied directly to the skin of injured muscle daily for seven days. The experimental group I was irradiated immediately by laser after injury, whereas the experimental group II was irradiated after 1 day of injury. The control group was non-irradiated. The results of this study were as follows. 1. In morphological observation, there were no significant changes in experimental and control groups for 7 days. At 3 days, however, the splited muscle fibers were observed in experimental groups, and the muscle atrophy and granular tissue viewed at 7 days in control group. 2. The VEGF was expressed in muscle fiber that located in the interspace between gastrocnemius and soleus muscles. As the time coursed, the immunoreactivity of VEGF also seemed to be strong in the individual muscle fibers. 3. The experimental group I & II showed higher immunoreactivity of VEGF than control group(p<0.05). Then, the experimental group I showed higher than group II especially(p<0.05). These data suggest GaAlAs semiconduct diode laser irradiation(830nm) enhanced angiogenesis in the skeletal muscle induced contusion injury, and immediate laser irradiation after injury promoted the angiogenesis greatly than after 1 day of injury.

  • PDF

Fatal Rhabdomyolysis in a Patient with Head Injury

  • Park, Yong Jin;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.5
    • /
    • pp.303-304
    • /
    • 2013
  • Rhabdomyolysis is a rare but potentially life-threatening disorder caused by the release of injured skeletal muscle components into the circulation. The authors report a case of severe head injury, in which a hyperosmolar state and continuous seizure complicated by severe rhabdomyolysis and acute renal failure evolved during the course of treatment resulted in a fatal outcome despite intensive supportive treatment. Our bitter experience suggests that rhabdomyolysis should be born in mind in patients with severe head injury who may develop hyperosmolar state and continuous seizure.

Effects of the He-Ne IR Laser Irradiation and Neuromuscular Electrical Stimulation on the Change of the Serum Biochemical Components in the Experimentally Induced Muscle Injured Rats

  • Kim, Jong-Soon;Rho, Min-Hee;Kim, Jae-Young
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • Low power laser and neuromuscular electrical stimulation have been utilized in many clinical applications for the treatment of musculoskeletal lesion. This study was to investigate the effects of low power He-Ne IR laser and neuromuscular electrical stimulation on the change of the serum biochemical components in experimentally induced muscle injured rats. The twenty Sprague-Dawley male rats were randomly assigned to the 4 groups: the normal group (n=5), the control group (n=5), the low power laser irradiation group (LLI) (n=5) and the neuromuscular electrical stimulation group (NMES) (n=5). The experimentally induced muscle injury was induced by the subcutaneous injection of a 0.1 ml Freund's Complete Adjuvant into the right hind paw and calf muscles in control, LLI and NMES groups. The LLI group was irradiated with He-Ne IR laser for 5 minutes every day during 10 days. Also, the NMES group was electrically stimulated 15 minutes every day during 10 days. The normal and control groups were not received with any therapeutic intervention. The authors performed tests which were the concentration of the serum biochemical components to detect the effects of therapeutic interventions. The results were as follows: 1. The level of the aspartate aminotransferase (AST) was significantly decreased in the LLI and NMES groups compare to the control group. 2. The level of the serum lactate dehydrogenase (LDH) was significantly decreased in the LLI and NMES groups compare to the control group. 3. The level of the serum creatine kinase (CK) was significantly decreased in the LLI and NMES groups compare to the control group. From the results, we could come to the conclusion that low power laser and neuromuscular electrical stimulation could be accelerating healing processes of skeletal muscle injury and further clinical work will be required.

  • PDF

The Effect of Microcurrent Electrical Stimulation on Muscle Atrophy Suppression in a Sciatic Nerve Injured Rat Model; Comparative Study by Current Intensity (좌골신경손상 쥐 모델을 이용한 미세전류 자극의 근위축 억제 효과 확인 및 자극 세기 별 비교)

  • Hwang, Donghyun;Kim, Seohyun;Lee, Hana;Jang, Seungjun;Kim, Sebin;kim, Tackjoong;Choi, Sooim;Kwak, Hoyoung;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • Microcurrent electrical stimulation(MES) has been used to accelerate recovery of atrophied skeletal muscle. However, convincing stimulation parameters for suppressing muscle atrophy due to injured sciatic nerve remains unclear. The objective of this study was to investigate the effective intensity of MES on restraining muscle atrophy with rat model underwent sciatic nerve injury(SNI). Twenty-5-week-old Sprague Dawley male rats were equally assigned to five groups : Control group(Control, CON, n = 4), Denervation group(Denervation, D, n = 4), Denervation with MES of $22{\mu}A$ group(Denervation + $22{\mu}A$, D+22, n = 4), Denervation with MES of $100{\mu}A$ group (Denervation + $100{\mu}A$, D+100 n = 4), Denervation with MES of $400{\mu}A$ group(Denervation + $400{\mu}A$, D+400, n = 4). To induce muscle atrophy, all rats in the D, D+22, D+100, and D+400 groups, were subjected to sciatic nerve injury on their right hindlimb and allowed to have 1 week of resting period. Following this period, rats underwent daily MES(60 min/ a day, 5times/1week) for 4 weeks. After that, we investigate morphological changes in muscle volume by using in vivo micro-computed tomography at week 0, 1, 3 and 5. After 5 weeks, the muscle volume had the highest value in D+400 group, and also noticeably increased in D+100 group compared to it in D group. The results of this study imply that MES with current intensities between $100-400{\mu}A$ can suppress muscle atrophy effectively.

Effect of Carrageenan-Induced Pain on Lower Limb Muscle and Ligament of Rat (Carrageenan에 의한 근통유발이 백서의 하지근과 인대에 미치는 영향)

  • Lee Gun-Hyee;Hwang Byung-Chun;Choi Jeong-Son;Kim Yang-Jung;Yun Ju-Young;Lee Geon-Mok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1356-1362
    • /
    • 2005
  • The purpose of this study os to investigative the effect of Carrageenan-Induced Pain on lower limb muscle and ligament of rat. To evaluate pain mechanism in muscle and ligament, pain was induced by the injection of 2% $0.1m{\ell}$ carrageenan into the left lower limb muscle of rats after rats were anesthesized with 3% enflurane. Rats were killed on 72 hours after pain induction under the anesthesia. anterior rectus femoris muscle and its ligament were removed from rat hind limb. Morphological changes of them were peformed by the observation of light and electron microscopes. In the light microscopic findings, the muscle cells were polyheadral and situated with each other without small gap in control group. nucleus of cell was seen along the cell margin, and muscle cell groups were divided by regular narrow gap in cross section. In the pain-induced group, muscle cell groups were divided each other by the irregular gap, and some of groups formed larger than other cell groups by the fusion. Intercellular gap of most cell groups were increased compared with control groups. And also, perimysium of muscle cell groups was swollen in cross section. In control group, muscle cells contacted each other closely and each cell was divided by perimysium. The intracellular gaps were not seen between myofibrills, and also striations were well defined between muscle cells in longitudinal section. In pain-induced group, muscle cells were divided by the small intracellular gaps. And also, muscle cell showed many a short cross or longitudinal intercellular gaps in longitudinal section. In light microscopic findings of control group, tendon was composed with many tendon fibers contacted each other closely without gap. The free margin of tendon was fused, and apso the tendon fibers did not invaded between muscles. In pain-induced group, tendon was divided small groups by intertendinous gap, and also the margin of tendon divided by small groups. In the free margin, tendon invaded into muscle cells, and also fibroblasts between tendon fibers were long and lance-shaped. From these results, it is suggested that pain induction by carrageenan injured rat skeletal muscle and ligament by the morphological changes.