• 제목/요약/키워드: Injector tip

검색결과 99건 처리시간 0.028초

충돌판에 의한 원판형 분무의 공간분포에 관한 실험적 연구 (A Study on the Distribution of Cylindrical Disk Spray by a Impinging Disk)

  • 차건종;김덕줄
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.251-262
    • /
    • 1995
  • The goal of this study is to provide fundamental information on the design of a new diesel injector system. The cylindrical disk spray was made by an impinging disk insited below the exit of air-assist atomizor. The disintegration processes on a twin-fluid atomization by air-assist atomizor were investigated. Liquid jet was disintegrated at the condition that wavelength was equal and longer than the circumference of the liquid jet, .lambda. .geq. .pi.do. However, the wavelength and the diameter of the liquid jet were decreased according to the increasing of air velocity. The relative density distribution of droplets and pattern of spray by impinging disk were investigated with a C-CCD. Optimum design conditions for cylindrical disk spray were also achieved. The pattern of cylindrical spray can classified according to the size of the disk and the distance from the nozzle tip to the disk. When the space of the disk and the nozzle tip was narrow and the diameter of the disk was larger than that of the air orifice of the nozzle exit, the good distribution of spray could be achieved. When the air flowrate was constant, the spray width was decreased according to the increasing of the liquid flowrate. When the liquid flowrate was constant, the spray width was decreased according to the increasing of the air flowrate.

INVESTIGATION ON SPRAY CHARACTERISTICS UNDER ULTRA-HIGH INJECTION PRESSURE CONDITIONS

  • LEE S. H.;JEONG D. Y.;LEE J. T.;RYOU H. S.;HONG K.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.125-131
    • /
    • 2005
  • This article reports the experimental and numerical results for free sprays under ultra-high injection pressure conditions to give us better understandings of spray characteristics and also to make clear a limit pressure condition in diesel sprays. The high pressure injection system developed in this work is devised to reach ultra-high pressure conditions in the range from 150 MPa to 355 MPa. The free spray injected from a single nozzle injector is visualized by the Schlieren technique and the high speed camera. In particular, it is found that the shock waves are present and propagated along the edge of spray in the downstream direction. The measured spray penetration length increases gradually with the injection pressure, but its increasing rate is decreased as the injection pressure increases. The Sauter mean diameter is also no longer augmented for the injection pressures higher than 300 MPa. In addition, the three­dimensional numerical simulations are conducted for comparing the measurements with the predictions based on two different breakup models. The TAB model results show better agreements with experimental data than the WAVE model under ultra-high injection pressure conductions. Moreover, the simulation results show that the gas-phase pressure increases substantially in the vicinity of the spray tip region. It supports the experimental observation that the shock waves are formed at the front of spray tip and are propagated downstream.

분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교 (Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System)

  • 박준규;박성욱
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.

정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구 (A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber)

  • 전충환;정정훈;김현규;송주헌;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.645-652
    • /
    • 2010
  • 본 연구의 목적은 다양한 분위기 압력 하에서 커먼레일 디젤인젝터를 통해 분사되는 비증발 디젤 분무특성에 관한 연구이다. 디젤분무의 거시적 특성으로 분무관통거리와 분무각을 음영사진과 이미지프로세싱으로 연구하였다. 수치해석은 상용 CFD프로그램인 AVL-FIRE를 사용하였다. 분열모델은 WAVE모델을 사용하였으며 표준 $k-{\varepsilon}$난류모델을 적용하였다. 분무각과 Zeuch법을 적용한 연료 분사율을 수치해석의 입력값으로 사용하였다. 분무관통거리를 실험값과 비교하여 좋은 결과를 얻었고 수치해석을 통하여 노즐팁 하류방향으로 분무의 각 구간별 액적입경분포를 알아보았다.

액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법 (Icing Characteristics in Liquid-Phase Injection of LPG Fuel)

  • 이선엽;김창업;최교남;강건용
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

가솔린 직접분사식 고압 슬릿 노즐의 팬형 분무 특성 고찰 (Fan-shaped Spray Characteristics of High Pressure Slit Nozzle in a Gasoline Direct Injection Engine)

  • 송범근;김종민;강신재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2239-2244
    • /
    • 2003
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

  • PDF

분위기 조건에 따른 GDI 엔진용 인젝터의 분무거동 및 증발특성에 대한 수치적 해석 (Numerical Analysis of Spray Behavior and Vaporization Characteristic of GDI Engine Injector Under Ambient Conditions)

  • 심영삼;황순철;김덕줄
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.545-552
    • /
    • 2004
  • The purpose of this study is to improve the prediction ability of the atomization and vaporization processes of GDI spray. Several models have been introduced and compared. The atomization process was modeled using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed TAB (APTAB) model. The vaporization process was modeled using Spalding model and Abramzon & Sirignano model. Exciplex fluorescence method was used for comparing calculated with experimental results. The experiment and computation were performed at the ambient pressure of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293k and 473k. Comparison of calculated and experimental spray characteristics was carried out and the calculated results of GDI spray showed good agreement with experimental results.

복합 모델을 이용한 연료 인젝터의 분무 미립화 모델링 (Modeling of Spray Atomization of Fuel Injector Using Hybrid Model)

  • 박성욱;김형준;류열;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.27-33
    • /
    • 2002
  • This paper presents the comparison of prediction accuracy of hybrid models. To obtain the experimental results fur comparing with the numerical results, the macroscopic and microscopic structures of the hollow-cone spray such as spray development process, spray penetration and the distribution of mean droplet size are investigated by using a shadowgraph technique and phase Doppler particle analyzer. Also, the numerical researches using various hybrid models are performed. LISA model and WAVE model are used for the primary breakup, and TAB, DDB, and RT model are used for the secondary breakup.

Atomization Characteristics and Prediction Accuracy of LISA-DDB Model for Gasoline Direct Injection Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1177-1186
    • /
    • 2004
  • In this paper, the spray atomization characteristics of a gasoline direct-injection injector were investigated experimentally and numerically. To visualize the developing spray process, a laser sheet method with a Nd :YAG laser was utilized. The microscopic atomization characteristics such as the droplet size and velocity distribution were also obtained by using a phase Doppler particle analyzer system at the 5 ㎫ of injection pressure. With the experiments, the calculations of spray atomization were conducted by using the KIVA code with the LISA-DDB breakup model. Based on the agreement with the experimental results, the prediction accuracy of LISA-DDB breakup model was investigated in terms of the spray shapes, spray tip penetration, SMD distribution, and axial mean velocity. The results of this study provides the macroscopic and microscopic characteristics of the spray atomization, and prediction accuracy of the LISA-DDB model.

Urea-SCR시스템 액막형 선회분사기의 분사압력변화에 따른 무특성에 관한 연구 (Effect of injection pressure on the atomization characteristics of a liquid sheet-type swirl injector for Urea-SCR system)

  • 김덕진;양동욱;이지근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.510-519
    • /
    • 2013
  • Urea-SCR시스템에 적용하기 위한 액막형 선회분사기의 분사압력변화에 따른 분무특성이 실험적으로 조사되었다. 실험에 사용된 노즐은 형상비 3.1을 갖는 단공 압력식 액막형 선회노즐이며, 노즐선단에 분사되는 유체에 선회류를 형성하기 위한 선회기가 설치되어 있다. 노즐의 분사량 조절은 PWM(pulse width modulation)기법에 의해 제어되었다. 분무의 발달과정은 2차원 PIV에 의해 가시화되었으며, 분무각 변화가 조사되었다. 분무액적의 속도 및 크기는 2차원 PDPA에 의해 상온 대기압 조건에서 측정되었다. 분무구조는 분사압력에 큰 영향을 받으며, SMD는 분사압력 증가에 따라 감소하며 선행연구자의 반실험적 결과와 유사한 경향을 보임을 알 수 있었다.