• Title/Summary/Keyword: Injector tip

Search Result 99, Processing Time 0.027 seconds

A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I) (LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I))

  • 김우석;박정철;박심수;유재석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles (분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화)

  • Yongjin Jung;Jinyoung Jang;Choongsik Bae
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

Visualization of the Icing at LPLi Engine Injector and the Effect of the Inflow of Ice Particle into Cylinder on the Combustion and the Exhaust Gas (LPLi 엔진 인젝터의 결빙조각 형성이 연소 및 배기가스에 미치는 영향)

  • 박정철;김우석;이종화;이병옥;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • As air pollution has become an important issue across the world, studies of clean fuel are on going to reduce combustion emissions. One example is development of the LPLi(Liquefied Phase LPG injection) engine. Some problems are occurred during development. One of the problems is icing phenomenon at injector tip due to evaporation potential heat when liquid LPG is injected. If the Icing is raised at injector tip or injector inserting hole, it disturbs fuel injection. And if the ice particles are inducted into cylinder, it brings problems associated with control of emission and air/fuel ratio. In order to solve the problems, a rig system was set up and observed Icing of injector tip. Engine test was carried out for visualization of injector tip icing and its effects on combustion and emissions.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

Effect of Injector-driven Type on Spray Behavior and Fuel Atomization Characteristics (인젝터 구동 방식에 따른 분무 거동 및 분무 미립화 특성)

  • Park, Ji-Hong;Suh, Hyun-Kyu;Park, Sung-Wook;Kim, Jae-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • This study was performed to figure out spray behavior and fuel atomization characteristics of a piezo-driven injector and a solenoid-driven injector in the common-rail injection system under the same design parameters and test conditions. The process of spray injection was visualized by using the spray visualization system composed of a Nd:YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer system. Compared with solenoid-driven injector, the piezo-driven injector has short injection delay and reaches quickly to the maximum injection value. Spray tip penetration shows some difference, however, spray angle of piezo-driven injector is wider than that of solenoid-driven injector. Sauter mean diameter of piezo-driven type injector is smaller than that of solenoid-driven type.

A Fundamental Study on Suppressing the Bubbling in the Injector of LPDi Engine by High Pressurization of Fuel (연료 고압화에 의한 LPDi 기관의 인젝터 내 기포발생 억제에 관한 기초 연구)

  • Noh, Ki-Chol;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.47-53
    • /
    • 2007
  • To suppress the bubble generated in the liquid LPG direct injector is the most important to develop the LPDi engine. It was found in the previous study that bubbling phenomenon in the injector of the LPDi engine is decisively influenced by pressure of fuel and temperature around the injector. Therefore, in this study, the effect on suppressing the bubbling in the LPDi injector by high pressurization of fuel is analyzed and the spray characteristics are also studied. As a result, it is found that the bubbling in the LPDi injector is radically suppressed when the pressure of fuel is over 50MPa. The bubbling is suppressed when the pressure of fuel is over 3MPa if the inserted position of the injector is considered. Also, it is confirmed that the higher the pressure of fuel is the longer spray tip penetration and is the larger spray angle. As the ambient pressure increases, spray tip penetration decreases and spray angle increases due to the increase of drag force.

Spray Characteristics of a Movable Pintle Injector with Pintle Tip Shape (가변 핀틀 인젝터에서 핀틀 팁 형상에 따른 분무특성 연구)

  • Nam, Jeongsoo;Lee, Keonwoong;Park, Sunjung;Huh, Hwanil;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.658-664
    • /
    • 2019
  • In the development of the liquid rocket engine using the pintle injector, spray characteristics such as spray angle, droplet size, and distribution of the droplets are dominant parameters. Three different kind of multi hole type pintle tip and a continuous type pintle tip were designed. In the case of multi hole pintle tip, SMD result did not have a significant difference depending on the number of holes. In analysis with visualization images, however, the droplets were uniformly distributed as the number of holes increased. Liquid droplets from continuous type pintle tip were finely atomized and dispersed uniformly than those from multi-hole type pintle tip. In addition, the thrust control by adjusting the liquid injection area of the pintle is suitable for the continuous type, which is easier to face-shutoff rather than the multi hole type. The spray angle of each pintle tip according to TMR was measured to derive a specific tendency and corresponding empirical formula.

Effect of Internal Flow Guide in Pintle Tip on Pintle Injector Thruster Combustion (핀틀 인젝터의 팁 내부 유동 가이드가 연소 성능에 미치는 영향)

  • Lee, Keonwoong;Nam, Jeonsoo;Radhakrishnan, Kanmaniraja;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.703-709
    • /
    • 2020
  • Pintle injector is known to have been adopted as injector of Lunar Module Descent Engine (LMDE) and contributed to success of the Apollo program and recently used in merlin engine. In this study, 500N Lab-Scale pintle injector thruster was manufactured and the combustion experiment with LOx/GCH4 was conducted. However, the proto-type thruster was showed some problems, such as low combustion efficiency and melting of pintle tip. To solve these problems, the flow guide in pintle tip was suggested through the CFD simulation. After addition of flow guide module, the combustion efficiency increased and pintle tip did not melt until the end of combustion.

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.

Spray Characteristics of High-Pressure Injector in Direct-Injection Gasoline Engine (직분식 가솔린 기관 고압 인젝터의 연료 무화 특성)

  • 이창식;최수천;김민규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.1-6
    • /
    • 1999
  • An experimental study was carried out to investigate the global spray behavior and spray characteristics of high-pressure fuel injector in the direct-injection goasoline enginet. The atomization characteristics of fuel spary such as mean droplet size, mean velocity , and velocity distribution were measured by the phase Doppler particle analyzer. The spray tip penetration and spray width were investigated by the result fo visualizaiton experiment. The quantitiative spary characteristics of injector spray were measured under various sparay conditions and ambient pressures. The results of experiment show that the increase in ambient pressure have influence on the spray tip penetration and spray development process. Also, the influence of injection pressure and measuring location on the mean velocity and droplet size distribution were discussed.

  • PDF