• 제목/요약/키워드: Injector design parameters

검색결과 59건 처리시간 0.022초

Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구 (Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change)

  • 황준환;박성영
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

소형로켓엔진에 적용된 스월 동축형 인젝터의 형상변수와 기체-액체 운동량 플럭스 비에 따른 분무특성 (Spray Characteristics According to the Variation of Design Parameters and Gas-liquid Momentum-flux Ratio in a Swirl-coaxial Injector Applied to Small Rocket Engine)

  • 안현종;강윤형;김정수
    • 한국추진공학회지
    • /
    • 제27권1호
    • /
    • pp.27-36
    • /
    • 2023
  • 소형로켓엔진에 적용되는 기체-액체 스월 동축형 인젝터의 분무성능을 파악하고자 형상변수와 추진제의 공급조건을 변화시켜 수류시험을 수행하였다. 인젝터의 형상변수인 스월 챔버의 직경 및 수축부의 각이 증가할수록 스월 강도가 증대되어 분무성능이 향상되었다. 또한, 기체-액체의 운동량 플럭스 비가 증가함에 따라 기체 유동이 액적 일부를 분무액막에서 이탈시켜, 분무시트의 중심부에서 gas-droplet mixture core가 형성되었다.

인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측 (Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition)

  • ;;박수한
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

캐비테이션에 관한 인젝터 노즐 홀의 설계민감도 평가 (Design Sensitivity Estimation of Injector Nozzle Hole Considering Cavitation)

  • 염정국;하형수
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1361-1369
    • /
    • 2013
  • 본 연구에서는 다공홀 인젝터 내부 유동에 대한 CFD 시뮬레이션 해석(ANSYS 13.0 CFX)을 직접 수행하였다. 이러한 결과를 바탕으로 인젝터 노즐 설계변수가 캐비테이션에 미치는 영향을 파악하기 위해 실험계획법이 적용되었다. 각 설계변수의 설계민감도 및 신호 대 잡음비 분석을 위해 캐비테이션 유동에 영향을 미친다고 판단되는 설계변수는 노즐 홀 직경, 노즐 홀 길이, 노즐 홀 각도 및 노즐 홀의 K-factor로 지정하였다. 또한 16 개 실험점으로 각 변수의 영향을 분석하였다. 본 연구에서 노즐 내부유동을 파악하기 위하여 수치해석 프로그램과 신호 대 잡음비 분석이 본 논문에 적용되었고 그 결과, K-factor의 변화가 노즐 홀 길이와 노즐 홀 각도의 변화보다 인젝터 내부 캐비테이션 생성에 미치는 영향이 더 크다는 것을 알 수 있었다.

운동량 플럭스 비의 변화에 따른 기체 중심 스월 동축형 분사기의 기체 가진 동특성 연구 (A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector with Acoustic Excitation by Varying Momentum Flux Ratio)

  • 이정호;박구정;윤영빈
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.168-174
    • /
    • 2015
  • Combustion instability is critical problem in developing liquid rocket engine. There have been many efforts to solve this problem. In this study, the method was sought through the injector as part of these efforts to suppress combustion instability. If the injector can suppress the disturbance coming from the supply line as a kind of buffer it will serve to reduce combustion instability. Especially we target at gas propellant oscillation in gas-centered swirl coaxial injector. The phenomenon is simulated with acoustic excitation of speaker. The film thickness response at injector exit was measured by using a liquid film electrode. Also the response of spray to the disturbance was observed by high-speed photography. Gas-liquid momentum flux ratio and the frequency of feeding gas oscillation were changed to investigate the effect of these experimental parameters. The trend of response by varying these parameters and the cause of weak points was studied to suggest the better design of injector for suppressing combustion instability.

화상처리 기술을 이용한 가솔린 인젝터의 분무 특성 측정 (Measurement of Spray Characteristics for Gasoline Injector Using the Image Processing Technology)

  • 이기형;이창식;이창희;이제선
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.68-74
    • /
    • 2000
  • A this experimental study is executed to analyze spray characteristics for air-shrouded injector and 4hole 2spray type injector used in a gasoline engine. Since spray parameters including spray penetration and angle, SMD, and atomization characteristics are very important to increase the engine performance, the image processing algorithm for measuring the non-spherical spray diameter is developed. Spray characteristics of the air-shrouded injector(2hole 2spray) and 4hole-2spray injector are analyzed respectively by this digital image processing method. Effective spray characteristics to injectors is derived from this experimentation and obtained the design guide for gasoline injector.

  • PDF

지능형 고효율 탈진 인젝터의 분사관 개발 (Development of Injection Tubes for Intelligent High-Efficiency Exhausted Injector)

  • 장성철;이경준;이정원
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.74-80
    • /
    • 2017
  • This study aimed to evaluate the validity of an exhausted injector design for filtration system and the performance characteristics thereof. The evaluation was intended through computational fluid dynamics(CFD) analysis based on computer simulation rather than through prototype fabrication and testing. Furthermore, the design of experiment was used to create an experimental design table by which the reaction characteristics of response factors were analyzed for design parameters. All experiments were substituted with computer simulations. Lastly, an optimal design model for the injection tubes was determined based on response surface method algorithms.

An Investigation of Design Parameter and Atomization Mechanism for Air Shrouded Injectors

  • Lee, Ki-Hyung;Lee, Chang-Sik;Kim, Bong-Gyu;Jeong, Hae-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.751-757
    • /
    • 2003
  • With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Saute. Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.

인젝터 구동 방식에 따른 분무 거동 및 분무 미립화 특성 (Effect of Injector-driven Type on Spray Behavior and Fuel Atomization Characteristics)

  • 박지홍;서현규;박성욱;김재욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.17-24
    • /
    • 2006
  • This study was performed to figure out spray behavior and fuel atomization characteristics of a piezo-driven injector and a solenoid-driven injector in the common-rail injection system under the same design parameters and test conditions. The process of spray injection was visualized by using the spray visualization system composed of a Nd:YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer system. Compared with solenoid-driven injector, the piezo-driven injector has short injection delay and reaches quickly to the maximum injection value. Spray tip penetration shows some difference, however, spray angle of piezo-driven injector is wider than that of solenoid-driven injector. Sauter mean diameter of piezo-driven type injector is smaller than that of solenoid-driven type.