• Title/Summary/Keyword: Injector design

Search Result 241, Processing Time 0.025 seconds

Atomization Characteristics of a Double Impinging F-0-0-F Type Injector with Four Streams for Liquid Rockets

  • Kang, Shin-Jae;Rho, Byung-Joon;Oh, Je-Ha;Kwon, Ki-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.466-476
    • /
    • 2000
  • This paper presents atomization characteristics of a double impinging F -0-0- F type injector with four streams. A phase Doppler particle analyzer was employed to measure the droplet-size and water was used as the inert simulant liquid instead of reactive propellant liquids. The droplet mean diameter (SMD) and size distribution were measured to investigate the effects of the momentum ratio and pressure drop variations. This experimental results can be used during the preliminary design stage of a impinging stream type injector for liquid rockets.

  • PDF

A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors (기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구)

  • Lee, Kangyeong;Jung, Hadong;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.

액체로켓엔진 축소형 고압 연소기 설계

  • Han, Yeoung-Min;Kim, Seung-Han;Seo, Seong-Hyeon;Lee, Kwang-Jin;Kim, Jong-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • The procedure of conceptual and detailed design of sub-scale combustor using bipropellant swirl or impinging injector with external or internal mixing for a liquid rocket engine are described in this paper. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has a injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl or impinging injector and 18 main swirl or impinging injectors.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.877-880
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.658-661
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Atomization Characteristics of Three Types of Swirl Injectors (세 가지 유형 와류 분사기들의 미립화 특성)

  • Hadong Jung;Jonghyeon Ahn;Kyubok Ahn
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.75-88
    • /
    • 2023
  • In this paper, the atomization characteristics of bi-swirl coaxial injectors for a 420 N-class bipropellant thruster were investigated. Three types of injectors, namely closed-type, open-type, and screw-type, were manufactured and designed to have the same spray angle and injection pressure drop. Water was used as a simulant, and cold-flow tests were conducted under ambient temperature and pressure conditions. Since the inner and outer injectors were designed to be the same type, only the inner fuel injectors that were easy to measure were used. Using a phase doppler particle analyzer, the velocity and diameter of atomized droplets were measured. Closed-type swirl injector exhibited droplet distributions with relatively high velocities and small SMD compared to the other two injectors. Open-type swirl injector formed droplets with reverse velocities in the center region and had a large recirculation zone. Screw-type swirl injector showed a sharp decrease in droplet velocity and size with radial distance from the liquid film breakup point. For the same design requirements, the closed-type swirl injector has superior atomization performance.

The Analysis of Volatile Components of Fresh Ginseng, Red Ginseng and White Ginseng by Solvent Free Solid Injector (SFSI) Techniques (Solvent Free Solid Injector (SFSI)를 이용한 수삼, 홍삼, 백삼의 향기성분 분석방법)

  • Kim, Mi-Ra;Kim, In-Hae;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.164-168
    • /
    • 2005
  • An experimental design has been used to optimize the analysis of volatile component from fresh ginseng using solvent free solid injector (SFSI). The analysis were performed at three different sample preparing methods (fresh, oven drying and freezed drying), different injector port temperatures (100, 150, 200, 250 and $300^{\circ}C$) and different preheating time (3, 5, 7, 10 and 15 min) according to the above experimental design. The optimum conditions from analytical results were fresh sample (sample preparing methods), $250^{\circ}C$ (injector temperature) and 10 min (preheating time). Ginsengs grown for six years at Gumsan were prepared for fresh, white and red ginsengs. These fresh, white and red singsengs were analyzed for their volatile components by GC/MS equipped with SFSI according to the above the optimum conditions. A total of thirty-three volatile components were identified in fresh ginseng by SFSI, thirty-six in white ginseng and thirty-eight in red ginseng. These results suggested that the SFSI method could be used for isolating volatile component in ginsengs.

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

Atomization Characteristic of F-O-F Triplet Injector for Gas Generator (가스발생기용 F-O-F 충돌형 인젝터 분사특성)

  • Kwon, Sun-Tak;Lee, Chang-Jin;Kim, Seung-Han;Han, Yeoung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.62-68
    • /
    • 2005
  • An injector for fuel rich gas generator was designed and experimentally investigated. Five variations of F-O-F triplet impinging type injector were tested to evaluate spray characteristics with kerosene/water simulant propellant. Test was focused to find the effect of design variables of impinging angle, and impinging distance, on the atomization performance. A mixing efficiency is used to compare droplet distribution and local O/F ratio of each injector in the range of momentum ratio of 0.2~1.3. Test results shows the max value of mixing efficiency locates about the 0.8 in momentum ratio. And the injector with an impinging angle of 45 degree and impinging distance of 6mm shows the very good performance result suitable for fuel rich gas generator. A combustion test will be also conducted with selected injector to verify the spray pattern and mixing efficiency.