• Title/Summary/Keyword: Injector design

Search Result 241, Processing Time 0.023 seconds

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

KSR-III 매니폴드의 추진제 분사균일성 해석

  • Cho, Won-Kook
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A numerical analysis on the uniformity of propellant injection velocity of KSR-III has been carried out to give design improvements. Injector holes were approximated as porous media with the same pressure drop . The injection velocity is higher at the opposite side of the inlet for both LOX and fuel due to the static pressure rise in the stagnation region. Flow passages at the vertical circular plate in the LOX dome increase the uniformity of LOX injection. Little change was observed in the injection uniformity and pressure drop for the slanted LOX passage. Also provided were the O/ F ratio distributions from the oxidizer/ fuel injection velocity analysis.

  • PDF

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

A study on the Image processing method for the Measurements of Spray characteristics (분무특성 파악을 위한 이미지 프로세싱 기법 연구)

  • Jeon, Jae-Hyoung;Kim, Tae-Young;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.85-88
    • /
    • 2010
  • It is essential to understand the spray characteristics of injectors for the development of liquid rocket engine systems. In this study, the image processing methods for the measurement of the spray characteristics such as spray angle, breakup length and drop size of Gas-Centered Swirl Coaxial(GCSC) injectors have been investigated. The charge-coupled device (CCD) camera with a stroboscope was used to capture the spray images. It is to be hoped that this methods could contribute to acquisition of reliable and worthwhile data for the design of injectors. Moreover, this image processing method will be verified by comparison with other experimental results.

  • PDF

Design and Verification of a Injector-Head with Multiple Injectors Arranged in a Row (일렬형 다중 인젝터를 가진 분리형 헤드 제작 및 검증시험)

  • Yu, Isang;Choi, Jiseon;Shin, Donghae;Park, Jinsoo;Ko, Youngsung;Kim, Seonjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1016-1020
    • /
    • 2017
  • This study was conducted to develop a test facility that simulates the combustion instability that occurs in a real-scale liquid rocket combustor. A separate engine head with 3 injectors arranged in a row was designed/manufactured and verified through preliminary tests. The flow rate and spray pattern of the head were confirmed by the cold flow test. Next, propellant spray test and combustion test were carried out. A preliminary combustion test was carried out at 10 bar and the combustion chamber pressure was measured to be significantly lower than the target pressure. This is because it was a low pressure test, and it is expected to be resolved in the high pressure test in the future.

  • PDF

Study on Optimization of Fuel Injection Parameters and EGR Rate of Off-road Diesel Engine by Taguchi Method (다구찌 방법을 적용한 Off-road 디젤 엔진의 분사조건 및 EGR 율 최적화에 관한 연구)

  • Ha, Hyeongsoo;Ahn, Juengkyu;Park, Chansu;Kang, Jeongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.84-89
    • /
    • 2014
  • Not only the emission regulation of on-road vehicle engine, but also emission regulation of off-road engine have been reinforced. It is the reason of wide application of emission reduction technology for off-road engines. In this study, optimization of engine parameters (Injector hole number, Injection timing and EGR rate) for reduction of NOx and smoke emissions were conducted by using the analysis of sensitivity and S/N ratio of Taguchi method(DOE). As results, this paper shows optimum value of the parameters for NOx and smoke emission reduction. From the result of reproducibility verification, it is final that the prediction value of NOx and smoke has the error of below 10%. Consequently, the method and results of this study will be used for quantitative reference to EGR control mapping in next study.

Performance improvement of lunar lander thruster (달 착륙선 지상시험용 추력기 성능개선)

  • Lee, Jong-Lyul;Choi, Ji-Yong;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Su-Kyum;Won, Su-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.42-45
    • /
    • 2012
  • As a basic research for the development of Korean lunar lander, propulsion system development for ground test is in progress. Design target is 220 N in ground thrust at 130 g/s flow rate, 200 psi chamber pressure. For the performance improvement, two type injector and catalyst bed was designed. For ground test, thrust measurement system using LM guide was developed and test was performed. The result shows 214.1 N thrust in atmosphere condition at 126.6 g/s flow rate.

  • PDF

Optimum Design of a Liquid Film Thickness Measurement Device Using Electric Conductance for Impingement Liquid Film (충돌 액막 분석을 위한 전기전도 액막 두께 측정장치 최적설계)

  • Lee, Hyeongwon;Lee, Hyunchang;Kim, Taesung;Ahn, Kyubok;Yoon, Youngbin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.386-391
    • /
    • 2018
  • To analyze the film cooling in a liquid rocket engine, it is necessary to understand the characteristics of the wall-impingement liquid film. We designed an optimal two-dimensional device for measuring the thickness of the liquid film thickness. This device quantitatively measures the liquid-film thickness distribution. In previous liquid-film thickness measuring devices, the liquid film was formed over the entire area of the sensor. However, its formation depended on injection conditions. To compensate for this, optimal resistors are selected. Additionally, saturation variations with partial saturation are analyzed. Furthermore, calibration using the enhanced plate method is conducted with improvements in spatial resolution. The device designed here can be used to analyze the properties of an impingement liquid film with a slit injector. This study can be used for film-cooling analysis in liquid rocket engines.

A Study on the Response Characteristics of a High Speed Solenoid (고속 솔레노이드의 응답특성에 관한 연구)

  • Cho, Kyu-Hak
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.142-151
    • /
    • 2000
  • The studies on the electronic control fuel injection system for a DI diesel engine have done for reducing the exhaust emission and improving fuel consumption. The electronic control fuel injection system is classified into a common rail system, a unit injector system and a high pressure injection system. The characteristics of these systems are largely depends on the operating characteristics of its solenoid that have high speed on-off operation. In order to improve these characteristics of fuel injection system, it is necessary to design the optimal shape of solenoid and select the input method of its power source. It was proposed HELENOID, COLENOID, DISOLE, and Multipole Solenoid in the studies of design for the optimal shape of solenoid. The studies on the energizing method, input method for power of solenoid were dealt with the conventional energizing method, the chopping method and the pre-energizing method. In order to find out the high response characteristics of solenoid, it is necessary to test the performance of optimally designed solenoid with a new energizing method. In this paper, the solenoid of multi-pole type with plat armature and its power control unit to control input current by the chopping method designed, and its response tests were performed according to its energizing conditions. As a result, the maximum input current for solenoid was controlled by the period of first stage exciting current and chopping duty ratio of control stage exciting current, and the fastest "on" time was able to get 0.46ms. The conditions of fastest "on" time was 0.3ms for first stage exciting current, 0.16ms for control exciting current and 75% for chopping duty ratio.

  • PDF

Effect of Combustion Chamber Design on Combustion Stability Characteristics of a Full-scale Gas Generator (연소실 설계에 따른 실물형 가스발생기의 연소 안정성 특성)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok;Ahn, Kyu-Bok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Effects of combustion chamber design on combustion stability characteristics of a full-scale gas generator were studied experimentally. Thirty seven double-swirl injectors with recess number of 1.5 were distributed in the injector head, which significantly influences combustion performance. The characteristics of combustion stability were inspected by the parametric variations such as changing length and diameter of the combustion chamber and installing a turbulence ring. The experimental result shows that as the effective length of the combustion chamber decreased, an instability frequency took place in a high-frequency region, and the amplitude of the dynamic pressure generally diminished and could be reduced to the unharmful level. However, the dynamic pressure fluctuation in the region of longitudinal resonant frequency could not be suppressed perfectly.