• Title/Summary/Keyword: Injector design

Search Result 242, Processing Time 0.028 seconds

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.

Development of High Pressure Sub-scale Regeneratively Cooled Combustion Chambers (고압 축소형 재생냉각형 연소기 개발)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-16
    • /
    • 2009
  • The development of high-pressure sub-scale combustion chambers is described. A total of four high-pressure sub-scale combustion chambers having either a detachable structure of the mixing head and the chamber or a single welded regenerative cooling structure have been developed. The sub-scale combustion chambers have a chamber pressure of 70 bar and propellant mass flow rate of 5.1~9.1 kg/s. The propellant mass flow rate and the recess number of the injector were changed for the improvement of combustion performance and they were validated through hot firing tests. The design and manufacturing techniques of regenerative cooling channel and film cooling to be applied to the full-scale combustion chamber were adopted through the present development and verified.

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Hot-firing Test Results of Subscale Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 액체로켓엔진 축소형 가스발생기 연소시험 결과)

  • Kim, Mun-Ki;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.726-728
    • /
    • 2010
  • A subscale gas generator was designed and manufactured to investigate the effect of design parameters on discharge coefficients of injectors for a 75 ton-class gas generator and hot-firing tests were successfully performed. The test results showed that discharge coefficients of fuel and liquid oxygen injectors remained nearly constant irrespective of variations of a mixture ratio and a chamber pressure. When the post diameter of the liquid oxygen injector was reduced, the discharge coefficient was increased as the pressure drop of the injector was decreased.

  • PDF

Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation (1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구)

  • Jinwoo Lee;Seoksu Moon;Donghan Hur;Jinsuk Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

NMR/MRI Superconducting Magnet Technologies: Recent Activities at MIT Francis Bitter Magnet Laboratory

  • Yukikazu Iwasa;Lee, Haigun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • In this paper we present a brief description and summary results of each of our recent activities in three areas, all devoted to NMR and MRI superconducting magnet technologies: 1) development of a high-field LTS / HTS NMR magnet; 2) development of a novel digital flux injector for slightly resistive NMR magnets; and 3) a proposal fer a low-cost MRI magnet system based on $MgB_2$ composite and an innovative cryogenic design / operation concept.

Application of predictive fuzzy sliding control for the fuel system of trubojet engines (제트엔진의 예견 퍼지슬라이딩 제어)

  • 남세규;한동주;김병교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1068-1071
    • /
    • 1993
  • An algorithm of fuzzy predictive sliding control is proposed to design a jet engine control system. Sliding control using predictive scheme is adopted to compensate the time delay of fuel injector. Fuzzy rule-base is also introduced to adjust the command input for suppressing the surge. The potential of the proposed algorithm is shown through simulations utilizing a typical engine-only model.

  • PDF

A Study of the linear accelerator electron gun upgrade for system design (선형가속기 Upgrade 전자총 시스템설계에 관한 연구)

  • Son, Yoon-Gyu;Park, Sung-Ju;Kim, Kyung-Ryul;Nam, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1373_1374
    • /
    • 2009
  • The PLS-II, the major upgrade program of the PLS (Pohang Light Source, a 2.5-GeV 3rd generation light source), is planned at the Pohang Accelerator Laboratory. Given the glaring lack of normative data regarding the PLS-II the major upgrade, this study can be seen as the first in a needed stream of research investigating selection by dual gun and dc electron gun. Usable electron gun can think method to use dual electron gun and method to prove energy by existing electron gun in energy increase. This article is concerned with the formal classification of used of pre-injector electron gun type of the DC and pulse. Design concept wishes to show contents that design for pulse type of power supply and DC type of electron gun.

  • PDF

Combustion Stability Test of LRE Thrust Chamber using Artificial Perturbation Method (강제교란 방법을 이용한 액체로켓엔진 연소기의 연소안정성 시험)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.52-60
    • /
    • 2010
  • Combustion stability tests of 30 $ton_f$-class LRE thrust chamber with double swirl coaxial injector were carried out in domestic ground combustion test facility by means of artificial perturbation method. In these tests, thrust chambers with varying design factors like recess number of injector, baffle length, types of film cooling and chamber diameter were used and test results showed that these design factors are closely related with high frequency combustion stability. By using the oscillation decrement instead of the decay time in the combustion stability analysis of artificially perturbed LRE thrust chamber, it was confirmed that increment of damping factor results in the improvement of high frequency combustion stability of LRE thrust chamber.

Combustion Test and Performance Analysis of Fuel Rich Gas Generator (농후 연소 가스발생기의 연소실험과 성능해석)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.92-97
    • /
    • 2005
  • A series of combustion test was done to verify the optimization result of a gas generator for a 10 ton thrust liquid rocket engine. An injector element is F-O-F impinging type injector and the test was conducted with kerosene/LOX propellants. Test results of combustion temperature and pressure show a very good agreement with optimal design result and verify that the design method was properly established. And turbulence ring revealed its effectiveness in enhancing combustion gas mixing and temperature difference in the radial direction showed only less than 15K. Also turbulence ring induced only 3.2% pressure loss in the combustion chamber, which is far less than conventional level observed in a gas turbine engine. Axial temperature distribution also shows that turbulence ring could effectively reduce about 10% or more in gas generator length if its location is properly selected.