• 제목/요약/키워드: Injective chromatic index

검색결과 1건 처리시간 0.014초

ON REFORMULATED INJECTIVE CHROMATIC INDEX OF GRAPHS

  • SALEH, ANWAR;AQEEL, A.;ALASHWALI, HANAA
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.13-29
    • /
    • 2021
  • For a graph G = (V, E), a vertex coloring (or, simply, a coloring) of G is a function C : V (G) → {1, 2, …, k} (using the non-negative integers {1, 2, …, k} as colors). We say that a coloring of a graph G is injective if for every vertex v ∈ V (G), all the neighbors of v are assigned with distinct colors. The injective chromatic number χi(G) of a graph G is the least k such that there is an injective k-coloring [6]. In this paper, we study a natural variation of the injective coloring problem: coloring the edges of a graph under the same constraints (alternatively, to investigate the injective chromatic number of line graphs), we define the k- injective edge coloring of a graph G as a mapping C : E(G) → {1, 2, …, k}, such that for every edge e ∈ E(G), all the neighbors edges of e are assigned with distinct colors. The injective chromatic index χ′in(G) of G is the least positive integer k such that G has k- injective edge coloring, exact values of the injective chromatic index of different families of graphs are obtained, some related results and bounds are established. Finally, we define the injective clique number ωin and state a conjecture, that, for any graph G, ωin ≤ χ′in(G) ≤ ωin + 2.