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ON REFORMULATED INJECTIVE CHROMATIC INDEX OF
GRAPHS

ANWAR SALEH∗, A. AQEEL AND HANAA ALASHWALI

Abstract. For a graph G = (V,E), a vertex coloring (or, simply, a col-
oring) of G is a function C : V (G) → {1, 2, ..., k} (using the non-negative
integers {1, 2, ..., k} as colors). We say that a coloring of a graph G is
injective if for every vertex v ∈ V (G), all the neighbors of v are assigned
with distinct colors. The injective chromatic number χi(G) of a graph G

is the least k such that there is an injective k−coloring [6]. In this paper,
we study a natural variation of the injective coloring problem: coloring the
edges of a graph under the same constraints (alternatively, to investigate
the injective chromatic number of line graphs), we define the k− injective
edge coloring of a graph G as a mapping C : E(G) → {1, 2, ..., k}, such
that for every edge e ∈ E(G), all the neighbors edges of e are assigned
with distinct colors. The injective chromatic index χ

′
in(G) of G is the least

positive integer k such that G has k− injective edge coloring, exact values
of the injective chromatic index of different families of graphs are obtained,
some related results and bounds are established. Finally, we define the in-
jective clique number ωin and state a conjecture, that, for any graph G,
ωin ≤ χ

′
in(G) ≤ ωin + 2.
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1. Introduction

Throughout this research work, by a graph we mean finite graph without
loops and parallel edges. Any notations or terminology not specifically defined
here, we refer the book [7]. More details about originality of the coloring and
the history of the famous Four-Colour Problem and its related are reported in
[5]. One of the application of coloring is the satellite range scheduling [12]. The
open neighborhood of an edge e ∈ E is denoted as N(e) and it is the set of all
edges adjacent to e in G. Further, N [e] = N(e)∪{e} is the closed neighborhood
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of e in G. An edge coloring of a graph G is a function f : E(G) → C, where C is
a set of distinct colors. For any positive integer k, a k-edge coloring is an edge
coloring that uses exactly k distinct colors. A proper edge coloring of a graph
G is an edge coloring such that no two adjacent edges are assigned the same
color. Thus a proper edge coloring f of G is a function f : E(G) → C such that
f(ei) ̸= f(ej) whenever edges ei and ej are adjacent in G. The edge chromatic
number χ′

(G) of G is the smallest integer k such that G has an edge coloring.
A proper edge coloring of a graph G is called a strong edge coloring if no edge
e ∈ E(G) is adjacent to two edges of the same color. The strong chromatic
index of G, denoted by χ′

s(G), is the least integer k for which G is strongly edge
k-colorable. The strong edge coloring with its applications is studied in [8].

An injective k-coloring of a graph G is an assignment of at most k colors
to the vertices of G such that two vertices sharing a common neighbor must
have distinct colors. The injective chromatic number χi(G) of a graph G is
the minimum integer k such that G has an injective k-coloring. This concept
was introduced and studied for the first time in [6]. In 2015, [4] Cardoso et al.
have introduced the notion of injective edge coloring as follows : An injective
edge coloring of a graph G is an edge coloring of G such that if e1, e2 and e3
are consecutive edges in G , then e1 and e3 receive the different colors. The
injective edge chromatic number of a graph G is the minimum number of colors
permitted in an injective edge coloring of G.
In this paper, we study a natural variation of the injective coloring problem:
coloring the edges of a graph under the same constraints (alternatively, to in-
vestigate the injective chromatic number of line graphs).

The line graph of a graph G is denoted by L(G) is a graph H whose vertex
set is equal to the edge set of G, with two vertices in H being adjacent if the
corresponding edges in G are adjacent (i.e., have a common vertex) [7]. Let
G be a simple graph with vertex set V (G). Alwardi et al in ([1], [2], [3]) have
introduced and studied the common neighborhood property between the vertices
by defining a new graph called common neighborhood graph and a new matrix
called common neighborhood matrix. The common neighborhood graph (or,
shorter congraph) of G, denoted by con(G), is the graph with V (con(G)) =
V (G), in which two vertices are adjacent if they have a common neighbor in G,
[1]. By the definitions of congraph and injective chromatic number of a graph
G, it is easy to see that χi(G) = χ(con(G)).
In ([9, 10, 11]) the authors studied some types of graph energies and labeling
which give interesting methodology for studying graph parameters. As usual
Pn, Cn,Kn and Wn are the n-vertex path, cycle, complete, and wheel graph,
respectively, Km,n is the complete bipartite graph on m + n vertices and Sn is
the star with n vertices.

The concept of common neighborhood [1, 2], injective chromatic number [6]
and the huge application of edge chromatic number of a graph motivated us to
introduce and study the reformulated injective chromatic index of graphs.
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2. Basic results

In this section, we define the reformulated injective chromatic index of a
graph and give several preliminary results and straightforward facts regarding
the injective chromatic index of graphs.

Definition 2.1. A k-edge coloring of a graph G = (V,E) is a mapping
C : E(G) → {1, 2, ..., k}. The edge coloring C is called injective edge color-
ing of a graph G = (V,E) if, for every edge e ∈ E(G), all the neighbors edges of
e are assigned with distinct colors. The injective chromatic index χ′

in(G) of G
is the least positive integer k such that G has a k–injective edge coloring. Note
that the injective coloring is not necessarily a proper coloring.

The proofs of the following propositions are straightforward.

Proposition 2.2. For any path Pn on n ≥ 4 vertices, χ′

in(Pn) = 2.

Proposition 2.3. For any cycle Cn on n ≥ 3 vertices,

χ
′

in(Cn) =

{
2, if n = 4k, k ≥ 1;
3, otherwise.

Proposition 2.4. For a wheel graph Wn with n ≥ 5 vertices,

χ
′

in(Wn) =

 n+ 4, if n ≡ 0 (mod 3);
n+ 2, if n ≡ 1 (mod 3);
n+ 3, if n ≡ 2 (mod 3).

The graph obtained from the wheel graph Wn+1 by adding pendent edge at
each vertex of the cycle called helm graph Hn [9].

Proposition 2.5. Let G be the helm graph Hn with n ≥ 4 vertices. Then

χ
′

in(G) =

 n+ 5, if n ≡ 0 (mod 3);
n+ 6, if n ≡ 1 (mod 3);
n+ 7, if n ≡ 2 (mod 3).

Proposition 2.6. If L(G) is the line graph of G. Then χ
′

in(G) = χi(L(G)).

Proposition 2.7. Let G =
∪m

j=1(Gj). Then χ
′

in(G) = max{χ′

in(Gj) : j =

1, 2, ..,m}.

Proposition 2.8. For any graph G,

χ
′

in(G) = χ(con(L(G))).

Proof. By the definitions of the line graph and the common neighborhood graph
(congraph) of a graph G, we have χ′

(G) = χ(L(G)) and χi(G) = χ(con(G)).
Therefore,

χ
′

in(G) = χi(L(G)) = χ(con(L(G))).

�
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Proposition 2.9. Let G be a connected graph with n ≥ 4 vertices. Then

χ
′
(G) ≤ χ

′

in(G).

Further, equality holds if G ∼= Pn, K1,n or C4k where k ≥ 1.

Proof. Let G be a connected graph with n ≥ 4 vertices. Then L(G) is connected
graph and not isomorphic to K2. Therefore, χ(L(G)) ≤ ∆

′
(G) and by the

definition of the injective chromatic index of a graph, we have ∆
′
(G) ≤ χ

′

in(G).
Thus, χ(L(G)) ≤ χ

′

in(G). Hence, χ′
(G) ≤ χ

′

in(G).
Obviously, if G ∼= Pn or C4k, k ≥ 1, then χ′

(G) = χ
′

in(G) = 2 and if G ∼= K1,n,
then χ′

(G) = χ
′

in(G) = n. �

Proposition 2.10. If H is a subgraph of a connected graph G, then χ
′

in(H) ≤
χ

′

in(G).

The square of a simple graph G is also a simple graph denoted by G2 has
the same vertices as G in which any two vertices u and v are adjacent in G2 if
and only if d(u, v) ≤ 2, where d(u, v) is the distance between u and v in G [7].
According to Proposition 2.10, we have the following corollary.

Corollary 2.11. For any connected graph G, χ′

in(G) ≤ χ
′

in(G
2).

In the following theorem, we will determine the necessary and sufficient con-
dition to χ′

in(G) = q for a connected graph G with q ≥ 3 edges. Actually, for
any graph G of diameter greater than or equal four (diam(G) ≥ 4) χ′

in(G) < q,
so we will discuss the graphs of diameter less than or equal three (diam(G) ≤ 3).

Theorem 2.12. Let G be a connected graph with q ≥ 3 edges and diam(G) ≤ 3.
Then χ

′

in(G) = q if and only if for any two edges e and g in G there exists an
edge adjacent to both of e and g.

Proof. Let G be a connected graph with q ≥ 3 edges and diam(G) ≤ 3. Suppose
that any two edges e and g in G have a common edge. Then con(L(G)) ∼= Kq.
Hence by Proposition 2.8, χ′

in(G) = q.
Conversely, let G be a connected graph with q ≥ 3 edges and diam(G) ≤ 3.
Suppose that χ′

in(G) = q. Then by Proposition 2.8, χ(con(L(G))) = q. There-
fore, con(L(G)) ∼= Kq that means any two vertices in L(G) having a common
neighbor. Hence, any two edges in G have a common edge neighbor. �

Corollary 2.13. Let G be a complete graph with n ≥ 3 vertices. Then

χ
′

in(G) =
n(n− 1)

2
.

Corollary 2.14.
(1) For any bi-star graph G ∼= B(m,n),

χ
′

in(G) = m+ n+ 1.
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(2) For any strongly regular graph G with the parameters (n, k, λ, µ), where
λ, µ ≥ 1,

χ
′

in(G) =
nk

2
.

(3) For any complete bipartite graph G ∼= Km,n, where 3 ≤ m ≤ n,

χ
′

in(G) = mn.

(4) For any multi complete bipartite graph G ∼= Kn1,n2,...,nt
, where ni ≥ 3,

i = 1, 2, ..., t, we have,

χ
′

in(Kn1,n2,...,nt
) =

t∏
i=1

ni.

Recall that in [7], the join G = G1 + G2 of graphs G1 and G2 with disjoint
vertex sets V1 and V2 and edge sets E1 and E2 is the graph union G1 ∪ G2

together with all the edges joining V1 and V2.

In the following, we obtain the exact value of χ′

in for the join graph
G = G1+ G2 of any two graphs G1 and G2, the firefly graph Fs,t,n−2s−2t−1, the
corona product C4 ◦ Kt, the grid graphs Pt �K2, Pt �Ps and Ct �K2.

Proposition 2.15. Let G1 and G2 with n1, n2 ≥ 2 vertices, respectively, be two
connected graphs. Then χ

′

in(G1 + G2) = χ
′

s(G1) + χ
′

s(G2) + n1n2.

Proof. Let G1 and G2 with n1, n2 ≥ 2 vertices, respectively, be two connected
graphs. From the definition of the joinG = G1+G2, we have E(G) = E1∪E2∪B,
where B = {uv : u ∈ V1 and v ∈ V2}. Since G1 and G2 are connected, then any
two edges of B having a common edge neighbor, thus all the edges of B should
assigned by different colors, also every edge in E1 has a common edge neighbor
with every edge in E2 so we need to color the edges of E1 by colors different of the
colors of the edges of B and E2 (and the same for E2). But, how we can color the
edges of E1 and E2?. Since n1, n2 ≥ 2 and each vertex of G1 adjacent to all the
vertices of G2 and vice versa (definition of G = G1 + G2), then we should color
the edges of E1 (and E2) such that no two adjacent edges sharing a same color
(i.e strong edge coloring). Hence, χ′

in(G1 + G2) = χ
′

s(G1) +χ
′

s(G2) + n1n2. �

We recall that in [10], A firefly graph Fs,t,n−2s−2t−1, where s ≥ 0, t ≥ 0, n−
2s− 2t− 1 ≥ 0 is a graph of order n that consists of s triangles, t pendent paths
of length 2 and n − 2s − 2t − 1 pendant edges sharing a common vertex (see
Figure 1.).

Let Fn be the set of all firefly graphs Fs,t,n−2s−2t−1. Note that, Fn contains
the stars Sn (∼= F0,0,n−1), stretched stars (∼= F0,t,n−2t−1), friendship graphs
(∼= Fn−1

2 ,0,0) and butterfly graphs (∼= Fs,0,n−2s−1).
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Figure 1. Firefly graph Fs,t,n−2s−2t−1

Proposition 2.16. For any firefly graph G ∼= Fs,t,n−2s−2t−1,

χ
′

in(G) = n− t = ∆(G) + 1.

Proof. Let G ∼= Fs,t,n−2s−2t−1 be a firefly graph, where s ≥ 0, t ≥ 0, n − 2s −
2t−1 ≥ 0. Let the s triangles and t pendent paths of length 2 and n−2s−2t−1
pendant edges sharing a common vertex v in G. Clearly, ∆(G) = deg(v) = n−
t−1. The line graph of G contains a clique isomorphic toKn−t−1 and s triangles,
every triangle attached with one edge and t edges attached. Now, it is easy to
see that the congraph of the line graph L(G) is H ∼= Ks+t +Kn−t−1 and hence,
χ(H) = n−t. Hence by Proposition 2.8, we have χ′

in(G) = n−t = ∆(G)+1. �

The corona product G1 ◦ G2 of two graphs G1 and G2, where V (G1), V (G2)
are the set of vertices of G1, G2, respectively, is the graph obtained by taking
|V (G1)| copies of G2 and joining each vertex of the i-th copy with the corre-
sponding vertex u ∈ V (G1) [13].

Proposition 2.17. For any positive integer t ≥ 1, χ′

in(C4 ◦ Kt) = 2t+ 4.

Proof. Let G = C4 ◦ Kt and let H be the subgraph of G induced by the set of
vertices V ′ ⊆ V (G), where V ′

= {v1, v2, v3, v4, a1, . . . , at, b1, . . . , bt}, [see Figure
2.]. In the graph H any two edges sharing a common edge accept two pairs of
edges those are v1v3, v3v4 and v2v4, v4v3 . Therefore, all the edges of H should
be colored by different colors accept the edge v3v4. Hence, χ′

in(H) = 2t+ 3.
Now, by Proposition 2.10, we know that χ′

in(H) ≤ χ
′

in(G). But in G, since
deg(v3), deg(v4) ≥ 3, then we should color the edge v3v4 by one more different
color from the edges in H and we can repeat the colors of H for the remaining
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edges in G. Thus, χ′

in(G) > χ
′

in(H) and χ
′

in(G) ≤ χ
′

in(H)+1. Hence, χ′

in(C4 ◦
Kt) = 2t+ 4. �
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Figure 2. Graph C4 ◦ Kt

The Cartesian product G1�G2 of two graphs G1 and G2, where V (G1),
E(G1) and V (G2), E(G2) are the sets of vertices and edges of G1 and G2,
respectively, has the vertex set V (G1) × V (G2) and two vertices (u, u′) and
(v, v′) are connected by an edge if and only if either (u = v and u′v′ ∈ E(G2))
or (u′ = v′ and uv ∈ E(G1)) [7].
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Figure 3. Graph Pt �K2
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Proposition 2.18. Let G ∼= Pt �K2, where n ≥ 4. Then χ
′

in(G) = 6.

Proof. Color the edges v11v12, v12v13, . . . , v1(t−1)v1t by the sequence of colors
C1, C2, C3, C4, C1, C2, C3, C4, C1, ... and the edges v21v22, v22v23, . . . , v2(t−1)v2t
by the sequence of colors C3, C4, C1, C2, C3, C4, C1, C2, C3, ... , respectively, and
color the edges v11v21, v12v22, . . . , v1tv2t by the sequence of colors C5, C6, C5, C6, ...
(see Figure 3.). It is easy to check that, this coloring is 6-injective edge coloring
for the graph G ∼= Pt �K2. Therefore,

χ
′

in(G) ≤ 6 (1)
Now, from Figure 3., clearly that there is at least a subgraph H in G isomorphic
to C4 ◦ K1 and by Proposition 2.17, χ′

in(H) = 6. Also, we have by Proposition
2.10,

χ
′

in(H) ≤ χ
′

in(G) (2)
From equations (1) and (2), the proof is complete. �

By the same argument in the proof of Proposition 2.18, we have the following
result for Ct �K2.

Proposition 2.19. For any integer t ≥ 3,

χ
′

in(Ct �K2) =


9, if t = 3;
8, if t = 5, 6;
6, if t = 4k, k ≥ 1;
7, otherwise.

Proposition 2.20. Let G ∼= Pt �Ps, where t ≥ 4 and s ≥ 3. Then χ
′

in(G) = 8.

Proof. Let us consider the graph G as horizontal paths from up to down label-
ing L1, L2, . . . , Ls and vertical paths from the left to the right M1,M2, . . . ,Mt .
color the edges in the horizontal paths, alternately, by the sequences of colors
S1 = {C1, C2, C3, C4, C1, C2, C3, C4, C1, ...} and S2 = {C3, C4, C1, C2, C3, C4, C1,
C2, C3, ...}, that means color L1 by S1 and L2 by S2 and so on.

Similarly, color the edges in the vertical paths by the sequences of colors S3 =
{C5, C7, C6, C8, C5, C7, C6, C8, C5, ...} and S4 = {C6, C8, C5, C7, C6, C8, C5,
C7, C6, ...}, alternately. It is not difficult to check that, any two edges sharing
a common edge have different colors which means that this coloring is 8-edge
injective coloring for G. Therefore,

χ
′

in(G) ≤ 8 (3)

Now, H = C4 ◦ K2 is a subgraph of G, then by Proposition 2.17, χ′

in(H) = 8.
Since χ′

in(H) ≤ χ
′

in(G), we get

χ
′

in(G) ≥ 8, (4)

then by (3) and (4), we get χ′

in(G) = 8. �
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Discussion of the section:
In the above section, motivated by the huge application of the edge chromatic
number and injective chromatic number of graph, we have introduced and de-
fined the injective chromatic index of graphs χ′

in and due to the importance of
the families and the operations of graphs and their various applications, we have
obtained the exact values of χ′

in for the very important graphs like paths, cycles,
wheel, Helm, bi-star, complete bipartite and strongly regular graphs, also, we
calculate the same index for the join graph G = G1 + G2 of any two graphs G1

and G2, the firefly graph Fs,t,n−2s−2t−1, the corona product C4 ◦ Kt, the grid
graphs Pt �K2, Pt �Ps and Ct �K2 which importance in social and computer
networks. Also, we have got some general properties of χ′

in like, its value for
the union of some graphs and the sufficient and necessary condition for χ′

in to
be equal the total number of edges, the relation between, a connected graph G
and its subgraphs, a graph G and its square graph G2, a graph G and its com-
mon neighborhood graph con(G) with respect to χ′

in. Finally, we have got the
relation between χ′

in and the chromatic number χ, the edge chromatic number
χ

′ and the injective chromatic number χi.
It is easy to see that, the injective edge coloring that have introduced in [4]

is not an injective coloring of the line graph, so, we introduce the injective chro-
matic index to study a natural variation of the injective coloring problem to
investigate the injective chromatic number of line graphs.

3. Certain values and bounds
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Proposition 3.1. For any positive integer a > 2, there exists a graph G with
2a vertices such that χ′

(G) = a and χ
′

in(G) = 2a− 1.

Proof. Let G be a graph which obtained from the cycle C4 by attaching a − 2
pendent edges to each vertex of only two adjacent vertices of C4 (see Figure 4.).
Let H be the bi-star B(a− 1, a− 1) with the centers v3 and v4, it is a subgraph
of the graph G and by Corollary 2.14, χ′

in(H) = 2a − 1. By Proposition 2.10,
we get,

χ
′

in(G) ≥ 2a− 1. (5)
By 2a− 1 colors for the edges of the bi-star H and making the color of the edge
v1v2 as the color of v1v3 or v2v4, we will get (2a− 1)–injective edge coloring for
G that means,

χ
′

in(G) ≤ 2a− 1 (6)

By inequalities (5) and (6), we get χ′

in(G) = 2a− 1. �

Theorem 3.2. Let G be a connected graph. Then χ
′

in(G) = 1 if and only if
G ∼= P2 or P3.

Proof. Let G be a connected graph with χ′

in(G) = 1. Then, we need only one
color to coloring the edges of G such that the neighborhood edges of any edge
have different colors and so there are two cases here.
Case 1. There is only one edge in G and since G is connected. Then G ∼= P2.
Case 2. There exist more than one edge in G and no edge has neighborhood
more than one and G is connected . Hence, G ∼= P3.
The other side is obvious. �

Corollary 3.3. χ′

in(G) = 1 if and only if G ∼= aK1 ∪ bK2 ∪K1,2 where a, b, c ∈
{0, 1, 2, ...} and b+ c ≥ 1.

Theorem 3.4. Let G be a connected graph. Then χ
′

in(G) = 2 if and only if
G ∼= Pn or C4k, k ≥ 1.

Proof. Let χ′

in(G) = 2. Then by Proposition 2.8, χ′

in(G) = χ(con(L(G))) = 2
which implies that con(L(G)) is a bipartite graph. But it is known that, for any
connected graph G, con(G) is a bipartite graph if and only if G ∼= Pn or C4k,
k ≥ 1 [3]. Therefore, L(G) ∼= Pn or L(G) ∼= C4k, k ≥ 1. Hence, G ∼= Pn or
C4k, k ≥ 1.
The other side is obvious. �

Theorem 3.5. Let G be a graph with q ≥ 2 edges and without isolated vertex.
Then

2δ(G)− 2 ≤ χ
′

in(G) ≤ q.
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Proof. The upper bound holds trivially, by q colors, we can color the graph G
such that any two edges sharing a common neighbor have different colors by
signing color for each edge.
For the lower bound. Let e be any edge in G such that deg(e) = ∆

′
(G). Then

e is a common neighbor for ∆
′
(G) edges in G, and if G has minimum degree

δ(G) ≥ 1, then ∆
′
(G) ≥ 2δ(G) − 2. Therefore, the edge e is common neighbor

for 2δ(G) − 2 edges, that means χ′

in(G) at least 2δ(G) − 2. Hence, 2δ − 2 ≤
χ

′

in(G) ≤ q.
For sharpness, for the lower bound G ∼= C4 and for the upper bound G ∼=
K1,n. �

One natural question will arise, for which graph G, χ′

in(G) = 2δ(G) − 2 ?.
Part of the answer is in the following results.

Proposition 3.6. For any k-regular graph G with χ′

in(G) = 2k− 2, the number
of edges q is even and q ≡ 0 (mod (k − 1)).

Proof. Let G be k-regular graph. Then L(G) is (2k − 2)-regular graph. To
finding the number of edges with the same color in G clearly every color appear
once in every neighborhood of any edge and it counted exactly (2k − 2) times
in
∑

e∈E(G) 1 = q. Therefore, each color appear exactly in q

2k − 2
edges. That

means q = 2t(k − 1) for some positive integer t. Hence, q is even and q ≡
0 (mod (k − 1)). �

Corollary 3.7. Let G be a connected graph with q ≥ 2 edges and with maximum
degree ∆(G) = ∆. Then

2(n−∆− 1) ≤ χ
′

in(G) + χ
′

in(G) ≤
n(n− 1)

2
.

A clique of a graph G is a complete subgraph of G. A clique of G is a maximal
clique of G if it is not properly contained in another clique of G. The clique
number of a graph G, denoted by ω(G), is the number of vertices in a maximum
clique of G. The number of edges in a maximum clique of G is denoted by ω′

(G).

It is clear that, if G has size q ≥ 1, ω′
(G) =

ω(G)(ω(G)− 1)

2
.

Proposition 3.8. Let G be a connected graph of order n ≥ 2 and G ̸= Kn.
Then χ

′

in(G) ≥ ω
′
(G) + 1.

Proposition 3.9. Let G be any k-regular graph with clique number ω(G) = ω.

Then χ
′

in(G) ≥
ω(2k − ω + 1)

2
.

Proof. Let G be any k-regular graph with clique number ω(G) = ω. Suppose
thatH is the subgraph which contains the maximum clique ofG and the attached
edges in each vertex of the clique, it is easy to check that, any two edges in
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H has a common edges and the number of edges in H is ω(2k − ω + 1)

2
, so

χ
′

in(H) =
ω(2k − ω + 1)

2
. Therefore, χ′

in(G) ≥
ω(2k − ω + 1)

2
. �

Proposition 3.10. For any connected graph G of size q ≥ 3, χ′

in(G) ≤ q −
diam(G) + 3. Further, equality holds if G ∼= B(m,n).

Proof. Let Pd be a diametral path in G. We can color Pd by three colors because
we cannot guarantee that no vertices in Pd have degree more than two. By
coloring all the other edges (q−diam(G)) with different colors we get the bound.
Clearly, if G ∼= B(m,n), then χ′

in(G) = m+n+1−diam(G)+3 = m+n+1. �
Theorem 3.11. Let G and H with n1, n2 vertices, respectively, be non trivial
connected graphs such that at least n1 or n2 does not equal two and G�H ̸=
P3 �K2. Then

χ
′

in(G�H) ≥ ∆(G�H) + max

{
degG(w) + ∆(H), degH(w′) + ∆(G)

}
,

where degG(w) = max
v∈NG(u)

deg(v), degH(w′) = max
v′∈NH(u′)

deg(v′) and degG(u) =

∆(G), degH(u′) = ∆(H).

Proof. Let degG(u) = ∆(G), degH(u′) = ∆(H) and degG(w) = max
v∈NG(u)

deg(v),

degH(w′) = max
v′∈NH(u′)

deg(v′). From the definition of the Cartesian product of

two graphs we conclude that, at least one from the two edges e = (u, u′)(w, u′),
f = (u, u′)(u,w′) has a maximum degree in G�H and since n1 or n2 is different
from two and G�H ̸= P3 �K2, then the graph W in Figure 5. is a subgraph
in G�H which needs number of colors equal to

∆(G�H) + max

{
degG(w) + ∆(H), degH(w′) + ∆(G)

}
to color all of its edges. Hence by Proposition 2.10, the proof is complete. �
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Figure 5. Subgraph W of G�H
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Proposition 3.12. Let G ∼= Pt �Sm, where t ≥ 4 and m ≥ 3. Then χ
′

in(G) =
2m+ 2.

Proof. Suppose V (Pt) = {v1, v2, . . . , vt} and V (Sm) = {u1, u2, . . . , um}, where
u1 is the center vertex. Let us denote to a vertex in Pt �Sm by viuj instead
of (vi, uj) and an edge by viuj − viuk or viuj − vluj instead of (vi, uj)(vi, uk)
or (vi, uj)(vl, uj), respectively [see Figure 6.]. In the graph Pt �Sm, color the
edges of the path v1u1 − v2u1 − · · · − vtu1 by the sequence of colors S2 =
{C3, C4, C1, C2, C3, C4, C1, C2, C3, ...}, respectively, and color the edges of all
the parallel paths v1u2 − v2u2 − · · · − vtu2,…, v1um − v2um − · · · − vtum by
the sequence of colors S1 = {C1, C2, C3, C4, C1, C2, C3, C4, C1, ...}, respectively.
Now, let us divide the remaining edges in Pt �Sm as rows,
R1 = {v1u1 − v1u2, v2u1 − v2u2, . . . , vtu1 − vtu2},
R2 = {v1u1 − v1u3, v2u1 − v2, u3, . . . , vtu1 − vtu3},…,
Rm−1 = {v1u1 − v1um, v2u1 − v2um, . . . , vtu1 − vtum}, so, we need to color each
row by two more different colors, alternately. Therefore, we have

χ
′

in(G) ≤ 2(m− 1) + 4 = 2m+ 2. (7)
Also, from Theorem 3.11, we have

χ
′

in(G) ≥ m+ 1 +max{2 +m− 1, 1 + 2} = 2m+ 2. (8)
This complete the proof. �
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Figure 6. Graph Pt �Sm
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Let F1, F2 and F3 be the graphs shown in Figure 7.
Theorem 3.13 ([11]). If diam(G) ≤ 2 and if none of the three graphs F1, F2

and F3 of Figure 7. is an induced subgraph of G, then diam(L(G)) ≤ 2.

Theorem 3.14. Let G be a diameter 2 graph with matching number m and
none of the three graphs F1, F2 and F3 of Figure 7. is an induced subgraph of
G. Then

χ
′

in(G) ≥ m.

Furthermore, the equality holds if G ∼= P4.

Proof. Let F be a maximum matching set of G. By Theorem 3.13, clearly for
any two edges in F there is one common neighbor edge between them as the
diam(L(G)) ≤ 2. Therefore, any edge injective coloring for G required at least
m colors. Hence, χ′

in(G) ≥ m. Also, if G ∼= P4, then χ
′

in(P4) = m = 2. �

xx x xx xx
x xx

x
x

x
x x

F1 F2

F3

Figure 7. Graphs F1, F2 and F3

Now, it is the turn to discuss the injective chromatic index for any tree Tn of
n vertices. Clearly that case n ≤ 3 is trivial so we concern here about n ≥ 4.
Theorem 3.15. For any tree Tn with n ≥ 4 vertices,

χ
′

in(Tn) ≤ 4(χ
′
(Tn))

2 − 10χ
′
(Tn) + 6.

Furthermore, the equality holds for any path Pn of n vertices.

Proof. Let G be a tree Tn with n vertices and maximum degree ∆(Tn) = ∆.
The line graph L(Tn) has n − ∆ cliques and the maximum degree of L(G) is
at most 2∆− 2. By the definition of congraph of L(G), we have the maximum
degree of con(L(G)) is at most (2∆ − 2)(2∆ − 3) = 4∆2 − 10∆ + 6 and it well
known that for any tree χ′

(Tn) = ∆(Tn) and also χ(G) ≥ ∆(G). Therefore by
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Proposition 2.8, we get χ′

in(Tn) ≤ 4(χ
′
(Tn))

2 − 10χ
′
(Tn) + 6.

Also, if Tn ∼= Pn, then χ
′

in(Tn) = 4(χ
′
(Tn))

2 − 10χ
′
(Tn) + 6 = 2. �

Theorem 3.16. For any tree Tn with n ≥ 4 vertices, χ′

in(Tn) = ∆
′
(Tn) or

∆
′
(Tn) + 1, where ∆

′
(Tn) is the maximum edge degree in Tn.

Proof. Let Tn be a tree on n ≥ 4 vertices and e = uv be a maximum edge in Tn.
Then e = uv has at least ∆′

(Tn) common edges in Tn, so χ
′

in(Tn) ≥ ∆
′
(Tn).

Suppose g = uw and h = vx be two arbitrary edges in Tn incident to u and v,
respectively. Then deg(w) ≤ deg(v) and deg(x) ≤ deg(u) because if not (means
deg(w) > deg(v) or deg(x) > deg(u)), then we get a contradiction with the
maximality of degree e = uv in Tn. Hence, all the edges incident to w will assign
by the same colors as the edges incident to v and all the edges incident to x will
assign by the same colors as the edges incident to u. Also, by taking in account a
different color for the edge e = uv, then χ′

in(Tn) does not exceed ∆
′
(Tn)+1. �

In the following, we determine the necessary and sufficient conditions for any
tree Tn, with n ≥ 4, the equality χ′

in(Tn) = χ
′
(Tn) is satisfied.

Theorem 3.17. Let Tn, with n ≥ 4, be a tree of maximum degree ∆
′
(Tn). Then

χ
′

in(Tn) = χ
′
(Tn) if and only if the following conditions are satisfied.

(1) Every edge e in Tn with deg(e) = ∆
′
(Tn) must be incident to vertices of

degree two or one,
(2) if two edges of maximum degree in Tn connected by a path of vertices of

degree two, then the length of that path must be even.
Proof. Let Tn, with n ≥ 4, be a tree of maximum degree ∆

′
(Tn). It is easy to

see that, if condition (i) is satisfied, then ∆(Tn) = ∆
′
(Tn). Thus, it is enough

here if we proof that for any tree Tn, with n ≥ 4, χ′

in(Tn) = ∆
′
(Tn) if and only

if conditions (i) and (ii) are both satisfied.
Let χ′

in(Tn) = ∆
′
(Tn). Suppose condition (i) does not hold. Then there exists

at least an edge e = uv with deg(e) = ∆
′
(Tn) such that deg(u) and deg(v) do

not equal two or one. Therefore, the edge e = uv must assign by a different
color as their edge neighbors. Thus, χ′

in(Tn) = ∆
′
(Tn) + 1, a contradiction.

Hence, condition (i) must be satisfied. Suppose now condition (ii) does not
hold. This means that there exists at least two edges e1 and e2 with deg(e1) =
deg(e2) = ∆

′
(Tn) satisfying condition (i) and connecting by a path Ps of vertices

of degree two such that the length of Ps is odd. Clearly that, in this case the
edges e1, e2 and the edges of Ps must assign by three different colors or we
need one more color to coloring the edge neighbors of either e1 or e2. Therefore,
χ

′

in(Tn) = ∆
′
(Tn) + 1, a contradiction. Hence, condition (ii) also must be

satisfied.
The converse is obvious. �
Definition 3.18. An injective clique of a graph G is the subgraph H of G such
that any two edges e ,f ∈ E(H) have a common edge adjacent to both of e and
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f . The largest number of edges of injective clique is called the injective clique
number of G and denoted by ωin(G) or in short ωin.

Proposition 3.19.
(1) For any complete bipartite graph Km,n ,ωin(Km.n) = mn.
(2) For any tree Tn , ωin(Tn) = ∆

′
(Tn).

(3) For any cycle Cn , ωin(Cn) = 2.

Conjecture: For any graph G,

ωin ≤ χ
′

in(G) ≤ ωin + 2.

Discussion of the section:
In section 3, due to the several importance of the study of bounds in graph
theory, we have determined some bounds of χ′

in in terms of the minimum de-
gree δ, total number of edges, maximum degree ∆, total number of vertices,
diameter, matching number and the clique number ω of graph. And for the
trees, which having a huge applications in graph theory, we have shown that
χ

′

in(Tn) = ∆
′
(Tn) or ∆

′
(Tn) + 1, where ∆

′
(Tn) is the maximum edge degree in

Tn and determined the necessary and sufficient conditions for any tree Tn with
n ≥ 4 the equality χ′

in(Tn) = χ
′
(Tn) is satisfied. Finally, after studied our new

parameter for many graphs, we have defined the injective clique number ωin and
conjectured that, for any graph G with at least one edge, ωin ≤ χ

′

in(G) ≤ ωin+2.

4. Conclusion

In this research work, we have demonstrated new results concerning the refor-
mulated injective chromatic index of different families of graphs. In particular,
we have obtained exact values for cycles, complete graph, complete bipartite
graph, some grids graphs, some cases of corona product, join graph and trees.
Also, we have determined bounds for the injective chromatic index in terms of,
number of edges, maximum degree, minimum degree, matching number and edge
clique number. Also, we have shown several more general properties concerning
the injective chromatic number. We have got the necessary and sufficient condi-
tions for the injective chromatic index to be equal to one, two and total number
of the edges. Also, we have determined the necessary and sufficient conditions
for any tree Tn with n ≥ 4 the equality χ′

in(Tn) = χ
′
(Tn) is satisfied. Finally,

we have defined the injective clique number ωin and conjectured that, for any
graph G with at least one edge, ωin ≤ χ

′

in(G) ≤ ωin+2. Many problems remain
open, such as proving or disproving our conjecture and studying the new classi-
fications of graphs by using the proposed conjecture. The conditions for which
the injective index of graph is equal to ωin or ωin + 1 is a challenging problem.
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