• 제목/요약/키워드: Injection temperature

검색결과 1,931건 처리시간 0.031초

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

사출성형기의 제어방식에 따른 사출장치 정밀도 검사 (Injection Unit Precision Inspection according to Control Method of Injection Molding Machine)

  • 정현석;유중학
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.414-419
    • /
    • 2016
  • 본 연구는 사출 성형기의 제어 방법에 따른 정밀 검사에 대한 연구를 수행하였다. 실험을 통하여, 유압사출 성형기와 전동식 사출성형기의 스크루 스트로크, 보압, 용융 수지온도에 대하여 정밀도에 미치는 영향을 조사하였다. 또한, 실험에서 얻어진 데이터 편차에 대한 가설 테스트를 수행 하였다. 연구를 통하여 스크루 스트로크, 용융 수지온도, 보압 순으로 편차가 크게 발생하는 것을 알 수 있었다. 유압식 사출성형기가 전동식 사출성형기에 비해 제품 간의 산포가 크게 발생하는 것을 확인하였다. 또한 통계프로그램인 미니탭을 활용하여 스크루 스트로크, 용융 수지온도, 보압에 대한 가설을 설립 한 후 P값을 확인하여 스크루 스트로크, 용융수지온도는 귀무가설($H_0$)을 채택하였으며, 보압은 상호차이가 발생한 대립가설($H_1$)을 채택하였다.

전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구 (A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating)

  • 최동혁;황현태;손동일;김대일
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.

사출성형금형에서 직선채널과 배플의 냉각효율 비교 (Comparison of Linear Channel and Baffle for Cooling Rate in Injection Mold)

  • 문영배;최윤식;정영득
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.1-4
    • /
    • 2012
  • Plastic products are producted more than 70% of total processes in the injection molding. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The time and system of cooling affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, it was made a comparative study about cooling of linear channels and baffles and observed the variation of mold temperature on the coolant's temperature. As the result, the linear channel's cooling rate had faster than baffles and as coolant's temperature was increased, difference of cooling time was increased. Result of this study will be used widely to design for cooling system of injection mold.

  • PDF

퍼지 논리 알고리즘에 의한 사출제품의 미성형 해결 (Trouble Shooting of Short Shot in Injection Molding By Using Fuzzy Logic Algorithm)

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be done by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient Quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

  • PDF

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Fuzzy Logic-Based Moldability-Conforming System in Injection Molding

  • Kang, Seong-Nam;Huh, Yong-Jeong;Huh, Yong-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.49-52
    • /
    • 2002
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be dune by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2005년도 동계 학술대회 논문집
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.

Simplex Swirl Injector의 Injection Instability에 관한 연구 (The Phenomena of Injection Instability for Simplex Swirl Injector)

  • 박병성;김호영;전철균
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.287-293
    • /
    • 2005
  • Most of all combustion system has combustion instability. It is a serious problem in combustion system. Unstable injection is one of the source of combustion instability. The experimental investigation of spray characteristics for simplex swirl injector were conducted experimentally. Two kerosene based fuels were chosen as the atomizing fluid. As the major operating parameters, fuel temperature and injection pressure were chosen, and varied in the range from 253 K to 293 K and from 0.2 MPa to 1.0 MPa, respectively. Direct spray images and mean diameter were measured for the various combination of operating parameters in the flow field. The results of present study show that the injection pressure and spray cone angle are fluctuated at specific conditions while it is continuous steady injection. As the fuel temperature changes continuously, spray cone angle varies discontinuously through the region of injection instability.

  • PDF