• Title/Summary/Keyword: Injection stage

Search Result 663, Processing Time 0.031 seconds

Finite Element Analysis for Wave-like Flow Marks in Injection Molding (사출성형 공정 중 물결 무늬에 대한 유한요소 해석)

  • S. Y Kang;Lee, W. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.474-480
    • /
    • 2003
  • The wavelike flow mark phenomenon is one of the surface defects that can arise during the injection stage of the injection molding process. We have performed a numerical analysis using a finite element method for the injection molding to verify the validity of “Go-over” hypothesis. Also, we have compared the results of numerical analysis with available experimental data. Numerical analysis results of the flow marks are qualitatively in good agreement with experimental data of reference, but are quantitatively deviated from experimental data in a consistent manner. A parametric study has been performed to examine the correlative effects of various injection molding processing parameters and material properties on the flow mark size.

  • PDF

Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions - (사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

Effects of Process Variables on the Gas Penetrated Part in Gas-Assisted Injection Molding

  • Han, Seong-Ryeol;Park, Tae-Won;Jeong, Yeong-Deug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.8-11
    • /
    • 2006
  • Gas-assisted injection molding (GAIM) process reduces the required injection pressure during mold filling stage as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process needs new parameters and makes the application more difficult because gas and melt interact during the injection molding process. Important GAIM factors involved in this process are gas penetration design, locations of gas injection points, shot size, delay time to inject gas as well as common injection molding parameters. In this study, the experiments are conducted to investigate effects of GAIM process variables on the gas penetration for PP (Polypropylene) and ABS (Acrylonitrile Butadiene Styrene) moldings by changing the gas injection point. Taguchi method is used for the design of the experiments. When the gas is injected at a cavity's center, the most effective factor is the shot size. When the gas is injected at a cavity's end, the most effective factor is the melt temperature. The injection speed is also an effective factor in GAIM process.

Development of a Gas Assisted Injection Molding Process for Exterior Display Panels (디스플레이용 외장패널의 가스사출공정 개발)

  • Choi, D.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Gas Assisted Injection Molding is a relatively new low-pressure injection molding technique that provides benefits such as reduced part warpage, excellent surface quality without shrink marks, greater design flexibility, etc. In the gas assisted injection molding process, the injected pressurized nitrogen gas flows through designed gas channels and forms hollow sections within the part. However, due to the characteristics of the gas, the design of the gas channels which are the paths for the injected gas is important in order to avoid defects such as gas blowout, fingering, etc. Therefore, in this study, the gas channel design for gas assisted injection molding of exterior display panels was conducted by examining the results of three CAE analyses. The designed gas channel was verified by conducting tryouts using a 450 ton injection molding machine with 3-stage pressure controlled gas kit. In addition, the hollow shapes which were formed by the gas with the installed gas channels were examined by examining the cross sections of the prototypes that were produced. As a result, it was found that exterior display panels can be produced without any defect by applying the gas assisted injection molding technique.

A Study on the Response Characteristics of a High Speed Solenoid (고속 솔레노이드의 응답특성에 관한 연구)

  • Cho, Kyu-Hak
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.142-151
    • /
    • 2000
  • The studies on the electronic control fuel injection system for a DI diesel engine have done for reducing the exhaust emission and improving fuel consumption. The electronic control fuel injection system is classified into a common rail system, a unit injector system and a high pressure injection system. The characteristics of these systems are largely depends on the operating characteristics of its solenoid that have high speed on-off operation. In order to improve these characteristics of fuel injection system, it is necessary to design the optimal shape of solenoid and select the input method of its power source. It was proposed HELENOID, COLENOID, DISOLE, and Multipole Solenoid in the studies of design for the optimal shape of solenoid. The studies on the energizing method, input method for power of solenoid were dealt with the conventional energizing method, the chopping method and the pre-energizing method. In order to find out the high response characteristics of solenoid, it is necessary to test the performance of optimally designed solenoid with a new energizing method. In this paper, the solenoid of multi-pole type with plat armature and its power control unit to control input current by the chopping method designed, and its response tests were performed according to its energizing conditions. As a result, the maximum input current for solenoid was controlled by the period of first stage exciting current and chopping duty ratio of control stage exciting current, and the fastest "on" time was able to get 0.46ms. The conditions of fastest "on" time was 0.3ms for first stage exciting current, 0.16ms for control exciting current and 75% for chopping duty ratio.

  • PDF

Effects of Sperm Membrane Disruption and Electrical Activation of Oocytes on In vitro Development and Transgenesis of Porcine Embryos Produced by Intracytoplasmic Sperm Injection

  • Shim, Sang Woo;Kim, Young Ha;Lee, Hoon Taek;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.358-363
    • /
    • 2008
  • The intracytoplasmic sperm injection (ICSI) procedure has recently been utilized to produce transgenic animals and may serve as an alternative to the conventional pronuclear microinjection in species such as pigs whose ooplasm is opaque and pronuclei are often invisible. In this study, the effects of sperm membrane disruption and electrical activation of oocytes on in vitro development and expression of transgene green fluorescent protein (GFP) in ICSI embryos were tested to refine this recently developed procedure. Prior to ICSI, sperm heads were treated with Triton X-100+NaCl or Triton X-100+NaCl+NaOH, to disrupt membrane to be permeable to exogenous DNA, and incubated with linearized pEGFP-N1 vector. To induce activation of oocytes, a single DC pulse of 1.3 kV/cm was applied to oocytes for $30{\mu}sec$. After ICSI was performed with the aid of a micromanipulator, in vitro development of embryos and GFP expression were monitored. The chemical treatment to disrupt sperm membrane did not affect the developmental competence of embryos. 40 to 60% of oocytes were cleaved after injection of sperm heads with disrupted membrane, whereas 48.6% (34/70) were cleaved without chemical treatment. Regardless of electrical stimulation to induce activation, oocytes were cleaved after ICSI, reflecting that, despite sperm membrane disruption, the perinuclear soluble sperm factor known to mediate oocyte activation remained intact. After development to the 4-cell stage, 11.8 (2/17, Triton X-100+NaCl+NaOH) to 58.8% (10/17, Triton X-100+NaCl) of embryos expressed GFP. The expression of GFP beyond the stage of embryonic genome activation (4-cell stage in the pig) indicates that the exogenous DNA might have been integrated into the porcine genome. When sperm heads were co-incubated with exogenous DNA following the treatment of Triton X-100+NaCl, GFP expression was observed in high percentage (58.8%) of embryos, suggesting that transgenic pigs may efficiently be produced using ICSI.

Production of Cloned Embryos and Animals following Regulation of Cell Cycle of Donor Nucleus and Type of Recipient Cytoplasm (토끼에서 공핵란의 세포주기 조절과 수핵란의 세포질 상태에 따른 핵이식 수정란의 체외 발달과 복제동물의 생산)

  • 박충생;전병균;하란조;윤희준;곽대오;이효종;최상용
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.259-267
    • /
    • 1997
  • To improve the efficiency of production of cloned embryos and animals by nuclear transplantation in the rabbit, the effect of cell cycle of donor nuclei and type of recipient cytoplasm on the in vitro developmental potential and production efficiency of offspring was determined. The embryos of 16-cell stage were collected from the mated does at 48h post-hCG injection and they were synchronized to G$_1$ phase of 32-cell stage. The oocytes collected at 14h post-hCG injection were freed from cumulus cells and then enucleated. One group of the enucleated cytoplasms was activated by electrical stimulation prior to injection of donor nucleus, and the other group was not pre-activated. The separated G$_1$phase blastomeres of 32-cell stage embryos were injected into the perivitelline space of recipient cytoplasms. After culture for 20h post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation and the fused nuclear transplant embryos were co-cultured for 120h and the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye and their blastomeres were counted. Some of the nuclear transplant embryos developed in vitro to 2- to 4-cell stage were transferred into the oviducts of synchronized recipient does. The electrofusion rate was similar between the types of donor nuclei and recipient cytoplasms used. However, the nuclear transplant embryos using G$_1$ phase donor nuclei were developed to blastocyst at higher rate(60.3%) than those using S phase ones(24.7%). Also, when non-preactivated oocytes were used as recipient cytplasms, the develop-mental rates of nuclear transplant embryos to blastocysts were significantly(P< 0.05) higher(57.1%) than those using preactivated ones(20.8%). The cell counts of nuclear transplant embryos developed to blastosyst stage were increased signficantly(P<0.05) more in the non-preactivated recipient cytoplasm(163.7 cells), as compared whit the preactivated recipient cytoplasm(85.4 cells), A total of 49 nuclear transplant embryos were tranferrid into 5 recipient does, of which two offsprings were produced from a foster mother 31 days after embryo transfer. these results showed that the blastomeres of G1 phase and non-preactivated oocytes might be utillzed efficiently as donor nuclei and recipient cytoplasms in the nuclear transplant procedure, thought the offspring production remained still low.

  • PDF

Flow Marks of Polypropylene (PP) Composites in the Injection Molding

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.320-325
    • /
    • 2015
  • Flow mark is a sort of surface defect on the composite that can arise during the filling stage of the injection molding process. The purpose of this study is to clarify a mechanism of the flow mark which appears on the surface of injection molded Polypropylene (PP) through the characterization of the surface structure. The materials used in this report are PP/rubber and PP/talc compounding, which are widely used in automobile part. The flow mark shows two different constitutions, such as a luster part and a cloud part on the surface of the injection molded PP. We have investigated the surface structure of PP/rubber and PP/talc composites by using scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX) and optical microscopy (OM). As a result, the cloud part contains higher contents of the rubber and talc compare to the luster part.

Development of Engineering Database for Injection Mold Design (사출 금형 설계를 위한 엔지니어링 데이터베이스의 개발)

  • Kim, Seong-Geun;Heo, Yeong-Mu;Byeon, Cheol-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.89-94
    • /
    • 2000
  • Engineering database for CIM of injection mold production has been developed to manage design information and parameters of injection mold. The database has direct connection with product data management system and management database. Design specifications are generated in initial stage of mold design with integration of management information. Design parameters and bill of materials for mold base parts are generated during the CAD process and transferred to the manufacturing database and procurement system. Standard modules for parts and mold base are constructed using national standard and legacy data of industries. The engineering database provides important information route for CIM of injection mold design and production.

  • PDF

Numerical Simulation of Flow-Induced Birefringence: Comparison of Injection and Injection/Compression Molding

  • Lee, Ho-Sang;Isayev, A.I.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • A computer code was developed to simulate the filling stage of an injection/compression molding process using a finite element method. The constitutive equation was the compressible Leonov model and the PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk under different processing conditions, including variations of the compression stroke and compression speed, were performed to determine their effects on the flow-induced birefringence. Simulated pressure traces were also compared to those obtained in conventional injection molding and with experimental data from the literature.