• Title/Summary/Keyword: Injection stage

Search Result 663, Processing Time 0.032 seconds

A Study on the Development of Intelligent Supplementary Feature Designer(ISFD) in Injection Molding (사출성형제품 부형상의 지적 설계에 관한 연구)

  • Gang, Seong-Nam;Heo, Yong-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.164-173
    • /
    • 2001
  • The configuration of injection molded part can be classified into primary feature and supplementary feature. Even though supplementary features such as ribs, snap fits and bosses make mold more complicated, which cause the increasement of the mold cost, supplementary features should be attached to primary features because of assembly, reinforcement, moldability and other functional purposes. But it is not easy for novice designers to design them appropriately because of the profound knowledge related to Injection molding. In this paper, the intelligent design tool called ISFD(Intelligent Supplementary Feature Designer) which supplies easy, simple, time and cost-effective design method has been studied and developed. A knowledge-based design system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design stage of injection molding.

  • PDF

A Study on the Implementation of a Remote Medicines Injection System For u-Hospital (u-Hospital 을 위 한 원 격 약물 주사 제어 시스템의 구현의 관한 연구)

  • Lim, Su-Young;Heo, Jung-Il;Seo, Jung-Ho;Ahn, Jin-Soo;Kim, Woo-Shik
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.376-380
    • /
    • 2007
  • This paper suggests remote injection system and explains the design of the system and means of implementation. Remote injection system means a system delivering the precise injection prescribed to the patient in the ward through input into the remote server using TCP/IP protocol. The system has been planned in detail. The syringe has been designed to be linked with the Ringer's rubber tube and the independently developed syringe-module is to be used in order to ensure precise and accurate delivery of the injected medication. In development stage of embedded software, object-oriented planning method has been chosen.

  • PDF

A study of estimation of filling phase condition in injection molding process (사출성형의 충전조건 선정에 관한 연구)

  • Jo, Y.M.;Kwon, O.J.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.110-118
    • /
    • 1995
  • The filling phase analysis of the injection molding process for thermoplastics was applied to predict pressure, themperature and shear stress in the test mold, and the results were compared with the experiment using 30% glass fiber added ABS resin. The finite difference method was used in the analysis considering the effects of heat transfer between molten polymer and mold wall, and also frictional heating by shear flow. The analysis results were considered as a method to improve the quality and the productivity of injection molding process. Using the analysis results, the molding factors such as mold-ability of polymers, performance of injection molding machine, positioning of gate and dimendsioning of runner in the injection molding process can be estimated at the design stage of mold for good quality and productivity.

  • PDF

A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating (급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구)

  • Park Keun;Kim Byung H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.

Electromagnetic Susceptibility Analysis of I/O Buffers Using the Bulk Current Injection Method

  • Kwak, SangKeun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.114-126
    • /
    • 2013
  • In this paper, we present a set of methodologies to model the electromagnetic susceptibility (EMS) testing of I/O buffers for mobile system memory based on the bulk current injection (BCI) method. An efficient equivalent circuit model is developed for the current injection probe, line impedance stabilization network (LISN), printed circuit board (PCB), and package. The simulation results show good correlation with the measurements and thus, the work presented here will enable electromagnetic susceptibility analysis at the integrated circuit (IC) design stage.

Recovery of Zinc and Lead From Steel Dust by Submerged Injection Smelting Process (SUBMERGED INJECTION SMELTING PROCESS에 의한 제강분진중 유가금속의 회수)

  • 문남일;최대규;이용학
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • The submerged injection smelting process was performed to recover Zn and Pb from steel dust throuth vaporization and to investigate the effect of temperature, slag composition, injection time, gas flow rate, etc. on the recoveries of valuable metals. The results show that vaporation rates of zinc and lead increased at higher temperture and higher moral ratio of ferrous to ferric oxides. In the initial stage of submerged injection of nitrogen gas, the molten slags of the dust have high value of molar ratio of $Fe^{2+}$/$Fe^{3+}$ and hence zinc and lead can be effectively recovered.

  • PDF

Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating (급속 가열에 의한 박육 사출성형의 유동특성 개선)

  • Kim, Byung;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

Effect of Cell Cycle of Donor Nucleus on In Vitro Development in Nuclear Transplant Rabbit Embryos (토끼 핵이식 수정란의 체외 발달에 미치는 공핵란 세포주기의 효과)

  • 박충생;전병균;윤희준;이효종;최상용
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.143-153
    • /
    • 1996
  • To improve the efficiency of nuclear transplantation in the rabbit, this study were evaluated the influence of celly cycle of donor nuclei on the in vitro developmental potential in the nuclear transplant embryos. The embryos of 16-cell stage were collected from the mated does at 48h post-hCG injection and they were synchronized to G1 phase of 32-cell stage. Synchronization of the cell cylce of blastomeres were induced, first, using an microtubules polymerization inhibitor, 0.5$\mu\textrm{g}$/ml colcemid for 10h to arrest blastomeres in metaphase, and secondly, using a DNA synthesis inhibitor, 0.1$\mu\textrm{g}$/ml aphidicolin for 1.5 to 2h to cleave to 32-cell stage and arrest them in G1 phase. The separated G1 phase blastomeres of 32-cell stage were injectied into enucleated recipient cytoplasms by micromanipulation. After culture until 20h post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation. The nuclear transplant embryos were co-cultured for 120h. In vitro cultured embryos were monitored every 24h to assess for development rate. After in vitro cultue for 120h, the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye for counting the number of blastomeres under a fluorescence microscopy. The cleavage rate of blastomeres from 16-cell stage stage rabbit embryos treated with colcemid for 10h or aphidicolin for 6h following colcemid for 10h were not significantly different. The electrofusion rate was similar by high in S and G1 phase donor nuclei as 80.6 and 79.1%, respectively. However, the nuclear transplant embryos using G1 phase donor nuclei were developed to blastocyst at high rate(60.3%) than those using S phase donor nuclei(26.0%). Moreover, the mean blastocyst stage were increased significantly(P<0.05) with the G1 phase donor nuclei(176.6 cells and 1.50 cycles), as compared with the S phase donor nuclei(136.6 cells and 1.42 cycles). These results show that the blastomeres of G1 phase were more successful as donor nuclei in the nuclear transplant procedure, compared with S phase.

  • PDF

Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector (커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

A Study on the Jetting Phenomena in Injection Molding Process (사출성형 공정에서 젯팅 현상에 관한 고찰)

  • Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF