• 제목/요약/키워드: Injection speed

검색결과 854건 처리시간 0.023초

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제22권2호
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

Effects of Morphine and Morphine-Ketorolac Tromethamine Intravenous Infusion for Postoperative Pain (Morphine과 Morphine-Ketorolac Tromethamine의 지속적 정주에 의한 술후 통증치료 효과 비교)

  • Lee, Kwang-Su;Lee, Kang-Chang;Song, Yoon-Kang;Kim, Tai-Yo;Yun, Jae-Seung
    • The Korean Journal of Pain
    • /
    • 제8권1호
    • /
    • pp.37-42
    • /
    • 1995
  • The intermittent injection of analgesics is a inadquate method for postoperative pain control. Recently a non-electroic, disposable and portable infusor (Boxter Two Day $Infusor^R$) has been developed which can deliver analgesics with 2 ml/h speed continuousely. The present study examined the effects of three methods of pain management on recovery in 306 patients undergoing elective surgery in Wonkwang University Hospital. Group 1 (n=106) received i.m. $Valentac^R$ on a PRN basis. Group 2 (n=100), initial 2 mg of bolus morphine was followed by 48 mg of continuous infusion. Group 3 (n=100), initial 2 mg of morphine followed by morphine 18 mg-ketorolac 120 mg. We evaluated an analgesic efficacy with NRS (numerical rating scale) at 12, 24, 36, 48, 60 and 72 hours after the operation. The side effects (nausea, vomiting, pruritus, sedation and respiratory depression) were evaluated. In group 1, we asked major concern before operation and efficacy of pain control with pain severity (no pain, mild pain, moderate pain, sever pain). The results were as follows: 1) Major concern before operation is pain (40%). 2) 53% of patients suffered pain in group 1. 3) Morphine and morphine-ketorolac infusion groups were superior to the i. m. ($Valentac^R$) group with respect to postoperative analgesia. 4) In group 3 (morphine-ketorolac), there was no pruritus and mild nausea and vomiting.

  • PDF

A study on Hemo-Dynamic information Within 30 seconds in DCE 3D Breast MRI : Experienced Reports (DCE 3D Breast MRI 검사 시 30 sec 이내에 혈류 역학적 정보에 대한 연구 : Experienced Reports)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2014
  • The purpose of this study evaluated the hemo-dynamic information within 30 seconds clinically in 3D breast MRI. From January to March 2014, A total of 40 people were examined at 1.5 Tesla(Philips, Medical System, Achieva, The Netherlands) MRI equipments using 16 channel SENSE breast coil. The imaging parameters on vibrant are fellow as: $TR/TE/FA^{\circ}$/Matrix size/Slice thickness/Slab($5ms/2ms/10^{\circ}/180{\times}139{\times}2mm/80$). This study used a Gadovist and injected it with injection speed of 4 ml /sec by auto injector with 15 ml saline flushing. Firstly, for the delay time study, it divided three different delay time from immediately, 20 seconds, and 30 seconds. In quantitative analysis, the ROI signal intensities of tumor and surrounding tissues were measured retrospectively. In qualitative analysis, the image quality was scored from 1 to 5 point by one experienced radiological technologists as a visual test. The significance level of each delay time was evaluated with a one-way ANOVA(p<0.05). In the visual test, score levels on 30 seconds delay time was a little bit higher than others(p<0.05). The signal intensity of the tumor were $1445{\pm}360$, $1410{\pm}320$, $1510{\pm}415$ on immediately, 20 seconds, and 30 seconds and score levels were $4.18{\pm}0.85$, $3.54{\pm}0.94$, $4.45{\pm}0.74$(p<0.05). The data on immediate images showed better results than that others(p<0.05). Conclusively, Although it has been high scored in 30sec delay time for visual test in order to avoid failure in 20second, 30seconds delay time after contrast media administration, we recommend that the DCE 3D breast MRI commence immediately.

  • PDF

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • 제10권6호
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF

Experimental Study on the Dissociation Characteristics of Methane Hydrate Pellet by Hot Water Injection (열수 주입법에 의한 메탄가스 하이드레이트 펠릿의 해리 특성에 관한 실험 연구)

  • Lee, Seung-Han;Yoon, Yong-Seok;Seong, Kwan-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제35권11호
    • /
    • pp.1177-1184
    • /
    • 2011
  • Gas-to-Solid (GTS) technology is composed of three stages: hydrate production, transportation, and regasification. For efficient operation of regasification plants, it is crucial to predict the temperature and flow rate of hot water necessary to dissociate the hydrate pellets. Dissociated gas escaping from the pellet surface, when in contact with hot water, will alter the flow field and consequently alter the heat transfer rate. Methane hydrate pellet dissociation characteristics in low- to moderatetemperature water were investigated by taking images of the changes in the hydrate pellets' shapes in a pressurized reactor and measuring the total time required for complete melting of the pellets. The effects of water temperature, hydrate conversion rate, and flow speed on the dissociation completion time were also investigated. Bubbling gas released from the pellet surface induced a secondary flow that enhanced the heat transfer rate and thus decreased the dissociation time. It was also found that a considerable flow rate was needed to significantly decrease the dissociation time.

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Simulation of Water Flows in Multiple Columns with Small Outlets

  • Suh Yong-Kweon;Li Zi Lu;Jeong Jong-Hyun;Lee Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1765-1772
    • /
    • 2006
  • High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycletime. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water.

The Development of a 20MW PWM Driver for Advanced Fifteen-Phase Propulsion Induction Motors

  • Sun, Chi;Ai, Sheng;Hu, Liangdeng;Chen, Yulin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.146-159
    • /
    • 2015
  • Since the power capacity needed for the propulsion of large ships is very large, a multiphase AC induction propulsion mode is generally adopted to meet the higher requirements of reliability, redundancy and maintainability. This paper gives a detailed description of the development of a 20MW fifteen-phase PWM driver for advanced fifteen-phase propulsion induction motors with a special third-harmonic injection in terms of the main circuit hardware, control system design, experiments, etc. The adoption of the modular design method for the main circuit hardware design can make the enclosed mechanical structure simple and maintainable. It can also avoid the larger switch stresses caused by the multiple turn on of the IGBTs in conventional large-capacity converter systems. The use of the distributed controller design method based on a high-speed fiber-optic ring net for the control system can overcome such disadvantages as the poor reliability and long maintenance times arising from the conventional centralized controller which is designed according to point-to-point communication. Finally, the performance of the 20MW PWM driver is verified by experimentation on a new fifteen-phase induction propulsion motor.

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권5호
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.