• Title/Summary/Keyword: Injection nozzle

Search Result 601, Processing Time 0.03 seconds

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

Comparison of Spray Characteristics between Conventional and Electrostatic Pressure-Swirl Nozzles

  • Laryea, G.N.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • Spray characteristics produced by conventional and electrostatic pressure-swirl nozzles for an oil burner have been studied, using kerosine as a test liquid. The charge injection mechanism is used to design the electrostatic nozzle, where specific charge density, breakup length, spray angle and mean diameter are measured and analyzed. Three nozzles with orifice diameters of 0.256, 0.308 and 0.333mm at injection pressures of 0.7, 0.9, 1.1 and 1.3 MPa are used in the study. In case of the electrostatic nozzle, voltages ranging from -5 to -12kV are applied. Comparison of the spray characteristics is made between the conventional and electrostatic nozzles. The results showed that, the electrostatic nozzle is superior to the conventional nozzle. This is due the effect of voltage on the liquid surface tension.

  • PDF

A Study on Design of High Pressure Injection Nozzle for Avoiding Chip Curling (칩 말림 방지를 위한 고압 분사 노즐 설계에 관한 연구)

  • Yi, Chung-Seob;Yun, Ji-Hun;Jeong, In-Guk;Song, Chul-Ki;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2011
  • In this study, it was grasped to the flow characteristics of cutting fluid injected by nozzle installed in high pressure holder for avoiding chip curling occurred during machining process. And for avoiding chip curling, the possibility of elimination under various chip conditions was checked. Consequently, the highest discharging pressure and velocity was shown in 150 of nozzle inflow angle. Also as nozzle outlet diameter is small, the pressure and velocity of injected flow are high. Moreover, It could be confirmed that width and thickness of chip have no direct effect on chip elimination and it is achieved by torque generated by injected cutting fluid.

A study on the Reduction of Scattering of Polyurea Coating for Waterproofing and Anti-Corrosion by Installing Air Jet Nozzle (에어분사구 설치에 따른 폴리우레아 도막 방수·방식재의 비산 발생 저감에 관한 연구)

  • Kim, Sun-Do;Park, Wan-Goo;Park, Jin-Sang;Cho, Il-Kyu;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.236-237
    • /
    • 2017
  • This study discusses the development of waterproofing layer jet-spray nozzle that forms a three-dimensional air cell. This nozzle has an air flow generation mechanism in the air groove of the attachment cell part located at the end of the injection nozzle. Since the air grooves also function as an air curtain, the airborne particles generated when the waterproof material is sprayed is effectively blocked. In the past, spraying of the waterproof material through the high pressure was possible, but this technology allows stable injection due to the static agitation method, and various problems caused by particle generation has been (damages to neighboring areas, economic loss, etc.) minimized.

  • PDF

Influences of Polyurethane Nozzle Shape on Mixing Efficiency (폴리우레탄 발포 노즐 형상이 혼합 성능에 미치는 영향)

  • Kim, Do Yeon;Lee, Tae Kyung;Jeong, Hae Do;Kim, Hyoung Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.31-35
    • /
    • 2016
  • For reaction injection molding (RIM) polyurethane was mixed in the mixing head by impingement mixing, injected into the mold, and cured quickly, as soon as the mold is filled. The shape of the nozzle in the mixing head is critical to improve the quality of polyurethane. To achieve homogeneous mixing, an intensive turbulence energy in the mixing nozzle is essential. In this study, a mixing nozzle for RIM was designed, and mixing efficiency was investigated based on experiment. Experiments were conducted with different combinations of nozzle tips and exit diameter to measure the mixing efficiency by measuring jet force and investigating mixing image with high speed camera. Jet force increased gradually and reaches steady state conditions. The jet force depended on shape of nozzle tip and outlet sizes. These results suggest that optimized nozzle configurations are necessary for high efficiency mixing with RIM.

Evaluation of an Air-jet and Roller Type Corn-husker (공기분사 및 회전 롤러를 이용한 옥수수 포엽 제거장치의 시험)

  • Park, Hoe-Man;Cho, Kwang-Hwan;Hong, Seong-Gi;Lee, Sun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.163-168
    • /
    • 2010
  • With income growth and "well-being" trends, sales of corn has been increased recently. Corns are processed at processing facilities on the main production site. Corn processing steps include removing bract, steaming, vacuum packing, and storing. To replace manual corn bract removing, some bract removing machines were imported and used. However, the machines were abandoned shortly, because of high damaging ratio of corns. In this research, factors of successful bract removing was studied with rotating rollers and air-injection nozzles to develop corn bract removing system. The test device was composed of a cylindrical roller, an air spray nozzle, a regulator, and a motor. Designing factors were roller type, diameter of air spraying nozzle, spraying angle, and spraying pressure. The measured factors were bract removing rate and damaging rate. It was found that optimum cylindrical roller surface shape was cylindrical roller and linear grove roller. This roller shape produced lowest damaging rate. Test results of the efficacy of preprocessing showed that the air spraying after preprocessing produced highest performance. The rotational speed and inclination of the roller didn't affect the bract removing performance. Optimum injection angle of the air jet nozzle was $70^{\circ}$. To increase bract removing rate and to reduce corn damage, required injection pressure and injection nozzle diameter were decided to less than 0.4 MPa and 2.5 mm, respectively. More than 3 times of nozzle passing produced good bract removing performance and there were no significant difference between the number of passing times.

A Numerical Simulation of the Effect of the Injection Angle and Velocity of the $CO_2$ Agent Nozzle on the Characteristics of $CO_2$ Concentration Distribution ($CO_2$ 소화제 노즐 분사각 및 분사속도가 $CO_2$ 농도분포특성에 미치는 영향에 관한 수치적 연구)

  • Park, Chan-Su
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.44-53
    • /
    • 2006
  • We have conducted a numerical simulation under two-dimensional unsteady conditions in order to analyze the effect according to the injection angle and velocity of the $CO_2$ agent nozzle which is one of the elements for the fixed type $CO_2$ fire extinguishing system installed in a ship on the characteristics of flow and $CO_2$ concentration distribution. The flow fields and concentration fields were measured and analyzed. We can found that the difference of flow patterns according to the conditions of $CO_2$ agent injection nozzle, and in all the conditions of $CO_2$ agent injection nozzle, the iso-concentration line was expanded from the region at which vortex was generated to the surroundings. We can expected that the intensity of the wall jet on the bottom floor was generated differently and the iso-concentration lines were expanded or shrunk according to the angle of $CO_2$ agent injection nozzle. In case of increasing $CO_2$ agent injection velocity maintaining the flow quantity of the $CO_2$ agent injection equally, the iso-concentration line of $CO_2$ agent on bottom floor can be formed more higher than in case of decreasing $CO_2$ agent injection velocity.

A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System (전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구)

  • Jang, S.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

Performance Evaluation of Wall Blower Nozzle using Erosion Analysis (침식 해석을 이용한 월 블로워 노즐의 성능 예측)

  • Paek, Jae Ho;Jang, llkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF