• Title/Summary/Keyword: Injection distance

Search Result 316, Processing Time 0.027 seconds

A Study on the Controlled-source Electromagnetic Responses Incorporating the Steel Casing (시추공 케이싱을 고려한 인공송신원 전자탐사 반응 고찰)

  • Oh, Seokmin;Noh, Kyubo;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.216-225
    • /
    • 2017
  • Recently, steel casing became an interesting issue when applying controlled-source electromagnetic (EM) method to various fields because effects of steel casing on EM responses are not negligible. This study employed an approach that approximates the steel casing as a series of electric dipole sources in order to develop the numerical algorithm for the efficient simulation of EM responses in the presence of steel casing. After verifying the validity of the developed algorithm, we analyze effects of steel casing on EM responses with the synthetic model simulating geothermal reservoir environment. The analysis showed that the effects of steel casing on EM responses are localized near the casing and increase as the transmitter becomes close to the casing. In addition, through the analysis on the EM responses by the injection of clean water, we confirm that the effects of casing are negligible when interpreting the after-injection data acquired using the transmitter located far enough from the casing. Considering the difference in EM responses between before and after injection in inversion, the effects of the casing can be neglected although after-injection data shows considerable difference due to the close distance between the transmitter and casing. To investigate this kind steel casing effect, the precise analysis on EM responses should be preceded. The algorithm introduced in this study will contribute to the reliable calculations of EM responses distorted by the conductive steel casing.

An Experimental Analysis for System Optimization to Reduce Smoke at WOT with Low Volatile Fuel on Turbo GDI Engine (저 기화성 연료를 사용한 직접분사식 과급 가솔린엔진에서 전 부하 스모크 저감을 위한 시스템 최적화에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk;Lee, Seangwock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • This study is a part of the high pressure injection system development on the Turbo GDI engine in order to reduce smoke emission in case of using the low volatile(high DI) fuel which is used as normal gasoline fuel in the US market. Firstly, theoretical approach was done regarding gasoline fuel property, performance, definition of particle matters and its creation as well as problems of the high DI fuel. In this experimental study, 2L Turbo GDI engine was selected and optimized system parameter was inspected by changing fuel, fuel injection mode (single/multiple), fuel pressure, distance between injector tip and combustion chamber, start of injection, intake valve timing in engine dyno at all engine speed range with full load. In case of normal gasoline fuel, opacity was contained within 2% in all conditions. On the other hands, in case of low volatile fuel (high DI fuel), it was confirmed that the opacity was rapidly increased above 5,000 rpm at 14.5 ~ 20 MPa of fuel pressure and there were almost no differences on the opacity(smoke) between 17 MPa and 20 MPa fuel pressure. According to the SOI retard, smoke decrease tendency was observed but intake valve close timing change has almost no impact on the smoke level in this area. Consequently, smoke decrease was observed and 16% at 6000rpm respectively with injector washer ring installed. By removing injector washer to make injector tip closer to the combustion chamber, smoke decrease was observed by 46% at 5,500 rpm, 42% at 6,000 rpm. It is assumed that the fuel injection interaction with cylinder head, piston head, intake and exhaust valve is reduced so that impingement is reduced in local area.

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.

Camera Self-Calibration from Two Ellipse Contours in Pipes

  • Jeong, Kyung-Min;Seo, Yong-Chil;Choi, Young-Soo;Cho, Jai-Wan;Lee, Sung-Uk;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1516-1519
    • /
    • 2004
  • A tele-operated robot should be used to maintain and inspect nuclear power plants to reduce the radiation exposure to the human operators. During an overhaul of the nuclear power plants in Korea, a ROV(Remotely Operated Vehicle) may enter a cold-leg connected to the reactor to examine the state of the thermal sleeve and it's position in the safety injection nozzle. To measure the positions of the thermal sleeve or scratches from the video images captured during the examination, the camera parameters should be identified. However, the focal length of the CCD camera could be increased to a close up of the target and the aspect ratio and the center of the image could also be varied with capturing devices. So, it is desired to self-calibrated the intrinsic parameters of the camera and capturing device with the video images captured during the examination. In the video image of the safety injection nozzle, two or more circular grooves around the nozzle are shown as ellipse contours. In this paper, we propose a camera self-calibration method using a single image containing two circular grooves which are the greatest circles of the cylindrical nozzle whose radius and distance are known.

  • PDF

Heat/Mass Transfer Characteristics on Rib-roughened Surface for Impingement/Effusion Cooling System with Initial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Nam, Yong-Woo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.338-348
    • /
    • 2004
  • The present study is conducted to investigate the effect of rib arrangements on an impingement/effusion cooling system with initial crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of tile hole diameter. Initial crossflow passes between the injection and effusion plates, and the square ribs (3mm) are installed on the effusion plate. Both the injection and effusion hole diameters are 10mmand Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effects of rib arrangements, various rib arrangements, such as 90$^{\circ}$transverse and 45$^{\circ}$angled rib arrangements, are used. Also, the effects of flow rate ratio of crossflow to impinging jets are investigated. With the initial crossflow, locally low transfer regions are formed because the wall jets are swept away, and level of heat transfer rate get decreased with increasing flow rate of crossflow. When the ribs are installed on the effusion plate, the local distributions of heat/mass transfer coefficients around the effusion holes are changed. The local heat/mass transfer around the stagnation regions and the effusion holes are affected by the rib positions, angle of attack and rib spacing. For low blowing ratio, the ribs have adverse effects on heat/mass transfer, but for higher blowing ratios, higher and more uniform heat transfer coefficient distributions are obtained than the case without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. Average heat transfer coefficients with rib turbulators are approximately 10% higher than that without ribs, and the higher values are obtained with small pitch of ribs. However, the attack angle of the rib has little influence on the average heat/mass transfer.

Flame Structure and Light Emission Characteristics in Coaxial Laminar Partially Premixed $CH_{4}/Air$ Flames;Effect of Central Fuel Injection (이중동축 메탄/공기 층류 부분 예혼합화염에서의 화염구조와 자발광 배출 특성;안쪽관 연료주입의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1116-1121
    • /
    • 2004
  • In this study, the effect of central fuel injection on a coaxial laminar $CH_{4}/air$ flame was experimented at the defined premixing condition(${\Phi}=1.90$, ${\sigma}=50/75/100%$, x/D=10). The partial premixing parameter are the equivalence ratio that total fuel is fixed at 200cc/min, the fuel split degree which means the percentage of fuel entering the outer tube to the total amount, and the mixing distance indicating the nonreactant mixture's homogeneity between inner tube top and burner exit. The object is to investigate the flame structure and chemiluminescence characteristics of laminar partial premixed flame as changing mixing parameters. The radical signal was acquired from ICCD camera and PMT. Each intensity was compared with Abel inverted value for measuring the effect of background light on the peak signal location and the intensity at central preheat zone. The results show that the peak location of each radical was broaden as the fuel split degree increasing because the mixing quality was enhanced. and $OH^{\ast}$ is a good indicator for flame front between reaction and preheat zone. At last $CH_{2}^{\ast}$ has the same tendency with $CH^{\ast}$ but a thinner reaction zone than $CH^{\ast}$ due to a rapid decay on the burned gas side.

  • PDF

Differentiation of Human Adult Adipose Derived Stem Cell in vitro and Immunohistochemical Study of Adipose Derived Stem Cell after Intracerebral Transplantation in Rats

  • Ko, Kwang-Seok;Lee, Il-Woo;Joo, Won-Il;Lee, Kyung-Jun;Park, Hae-Kwan;Rha, Hyung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • Objective : Adipose tissue is derived from the embryonic mesoderm and contains a heterogenous stromal cell population. Authors have tried to verify the characteristics of stem cell of adipose derived stromal cells (ADSCs) and to investigate immunohistochemical findings after transplantation of ADSC into rat brain to evaluate survival, migration and differentiation of transplanted stromal cells. Methods : First ADSCs were isolated from human adipose tissue and induced adipose, osseous and neuronal differentiation under appropriate culture condition in vitro and examined phenotypes profile of human ADSCs in undifferentiated states using flow cytometry and immunohistochemical study. Human ADSCs were transplanted into the healthy rat brain to investigate survival, migration and differentiation after 4 weeks. Results : From human adipose tissue, adipose stem cells were harvested and subcultured for several times. The cultured ADSCs were differentiated into adipocytes, osteoctye and neuron-like cell under conditioned media. Flow cytometric analysis of undifferentiated ADSCs revealed that ADSCs were positive for CD29, CD44 and negative for CD34, CD45, CD117 and HLA-DR. Transplanted human ADSCs were found mainly in cortex adjacent to injection site and migrated from injection site at a distance of at least 1 mm along the cortex and corpus callosum. A few transplanted cells have differentiated into neuron and astrocyte. Conclusion : ADSCs were differentiated into multilineage cell lines through transdifferentiation. ADSCs were survived and migrated in xenograft without immunosuppression. Based on this data, ADSCs may be potential source of stem cells for many human disease including neurologic disorder.

The Effect of Low Frequency Electro-acupuncture at ST39 on Intestinal Motility in Rats (하거허 상응부위 저주파 전침자극이 흰쥐의 장운동에 미치는 영향)

  • Hong, Seo Jin;Lee, Hyun;Kang, Jae Hui
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.9-21
    • /
    • 2016
  • Objectives : The aim of this study was to investigate the effect of low frequency electro-acupuncture at ST39 on intestinal motility in rats. Methods : Intestinal hypermotility and hypomotility in rats were induced by oral carbachol ingestion and loperamide injection. Rats were divided into seventeen experimental groups including the normal and holder groups. The rats were induced with intestinal hypermotility and hypomotility and divided into pre and post-treatment groups. I also carried out acupuncture (needle retention) and low frequency electro-acupuncture at ST39 or the sham point. I fed charcoal to rats after the treatment and calculated its distance travelled in the gastrointestinal tract, which was compared by groups so as to determine which treatment was more effective in increasing or decreasing intestinal motility. Results : 1. In normal rats, low frequency electro-acupuncture at ST39 showed no significant effect on intestinal motility. 2. Pre-treatment with acupuncture (needle retention) at ST39 on intestinal motility over-activated with carbachol significantly decreased intestinal motility in rats. 3. Pre-treatment with low frequency electro-acupuncture at ST39 on intestinal motility over-activated with carbachol significantly decreased intestinal motility in rats. 4. Pre-treatment with acupuncture (needle retention and low frequency electro-acupuncture) at ST39 showed no significant effect on intestinal hypomotility in rats that was induced by loperamide injection. Conclusions : These results suggest that acupuncture (needle retention) and low frequency electro-acupuncture at ST39 have preventive effects on intestinal hypermotility. Regardless of the stimulation method, ST39 showed an effect on intestinal motility. Further study is required to confirm other effects of ST39.

Study on Spray Visualization and Atomization Characteristics of Air-assist Type Injector for Scramjet Engine (스크램제트 엔진용 공기 보조형 인젝터의 분무 가시화 및 미립화 특성에 관한 연구)

  • Lee, Jinhee;Lee, Sanghoon;Lee, Kyungjae;Kim, Jaiho;Yang, Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.88-96
    • /
    • 2017
  • As a part of the development procedures of scramjet engine with a regenerative cooling system, this experiment was performed using air-assist type injectors for scramjet engine. Two types of injectors were used in this experiment with the 90 and 60 degrees of the injection angle to the main flow. Mie-scattering was used for spray visualization and PDPA was used for the measurement of the atomization characteristics. It was found that increasing the pressure of supplied gas and the distance from nozzle tip led to the enhancement atomization characteristics and the injector with 60 degrees injection angle has better atomization characteristics than 90 degrees injector.