• Title/Summary/Keyword: Injection conditions

Search Result 1,829, Processing Time 0.029 seconds

Shrinkage of Injection Molded Part for Inorganic Additive Compositions (무기 첨가물 함량에 따른 사출성형품의 성형 수축)

  • Kim B.D.;Yoo Y.H.;Hwang B.H.;Lyu M.Y.;Kim A.S.;Park S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.58-64
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions, resins and additives. The shrinkage of injection molded part for crystalline polymer, PBT (polybutylene terephthalate) has been studied for various operational conditions of injection molding and content of additives. Mica was used as a additive to PBT to examine the part shrinkage according to the mica content. The part shrinkages of mica contained PBT decreased as mica content increases. Higher injection temperature and injection pressure resulted in a lower shrinkage. As mold temperature increases the part shrinkage decreased. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and mica contained PBT. However the shrinkage difference between flow and perpendicular to flow directions decreased as mica content increased.

  • PDF

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Pressure distributions in the cavity in injection molding for various operational conditions (사출성형조건에 따른 캐비티의 압력분포)

  • Kim J. M.;Jun J. H.;Lyu M. Y.;Hwang H. S.;Lee J. W.;Lee S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.214-219
    • /
    • 2005
  • Pressure distribution in the cavity during injection molding affects part quality. In this study pressure distributions in the runner, near gate in the cavity, and end of ail in the cavity have been measured using direct pressure sensors for various molding conditions. Molding conditions were injection speed, injection pressure, packing time from filing stage, and packing pressure. Through experiments it was realized that the packing time from filling stage and packing pressure are the dominant factors on the part quality such as part shrinkage. Experimental results have been compared with computer simulations.

  • PDF

Corrosion release behavior of alloy 690 and its application in high-temperature water with Zn injection

  • Liao, Jiapeng;Hu, Yousen;Li, Jinggang;Jin, Desheng;Meng, Shuqi;Ruan, Tianming;Hu, Yisong;Zhang, Ziyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.984-990
    • /
    • 2022
  • Corrosion release behavior of Alloy 690 in high-temperature water was investigated under the conditions of injected Zn concentrations of 0 ppb, 10 ppb and 50 ppb. A protective oxide film composed of Zn(FexCr1-x)2O4 and Cr2O3 was formed with Zn injection, resulting in a better corrosion resistance. In comparison with the Zn-free condition, the corrosion release rate under the Zn-injection conditions was smaller. The corrosion release inhibiting factors were 1.7 and 1.9 under the conditions of 10 ppb and 50 ppb Zn-injection respectively. A foreseen application of the corrosion and corrosion release rates has been proposed and discussed.

Development of a precision machining process for the outer cylinder of vacuum roll for film transfer (실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구)

  • Hyo-Eun Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

A Searching Method of Optima] Injection Molding Condition using Neural Network and Genetic Algorithm (신경망 및 유전 알고리즘을 이용한 최적 사출 성형조건 탐색기법)

  • Baek Jae-Yong;Kim Bo-Hyun;Lee Gyu-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.946-949
    • /
    • 2005
  • It is very a time-consuming and error-prone process to obtain the optimal injection condition, which can produce good injection molding products in some operational variation of facilities, from a seed injection condition. This study proposes a new approach to search the optimal injection molding condition using a neural network and a genetic algorithm. To estimate the defect type of unknown injection conditions, this study forces the neural network into learning iteratively from the injection molding conditions collected. Major two parameters of the injection molding condition - injection pressure and velocity are encoded in a binary value to apply to the genetic algorithm. The optimal injection condition is obtained through the selection, cross-over, and mutation process of the genetic algorithm. Finally, this study compares the optimal injection condition searched using the proposed approach. with the other ones obtained by heuristic algorithms and design of experiment technique. The comparison result shows the usability of the approach proposed.

  • PDF

Improment of Diesel Combustion using multiple injection under Cold Start Condition (냉시동 조건에서 디젤 연소 특성 및 연소 개선에 대한 연구)

  • Lee, Haeng-Soo;Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.711-717
    • /
    • 2017
  • Startability and harmful emissions are the main issues in diesel engine development under cold conditions. The characteristics of combustion with multiple injection were investigated under cold start conditions. For quantitative analysis, the in-chamber pressure profile was measured and combustion visualization using direct imaging was accomplished. With multiple injection, the peak in-chamber pressure and heat release rate were increased compared to single injection. In addition, the period of flame luminosity detection was shortened using multiple injection. Combustion by main injection was improved with an increase in heat released by pilot combustion when the pilot injection quantity was increased. Finally, an increase in injection pressure also showed the possibility of combustion improvement. On the other hand, an increase of in the pilot injection quantity and injection pressure can cause an increase in harmful emissions, such as HC and CO due to wall wetting. Therefore, more sensitive calibration will be needed when applying a multiple injection strategy under cold start conditions.

INVESTIGATION ON SPRAY CHARACTERISTICS UNDER ULTRA-HIGH INJECTION PRESSURE CONDITIONS

  • LEE S. H.;JEONG D. Y.;LEE J. T.;RYOU H. S.;HONG K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • This article reports the experimental and numerical results for free sprays under ultra-high injection pressure conditions to give us better understandings of spray characteristics and also to make clear a limit pressure condition in diesel sprays. The high pressure injection system developed in this work is devised to reach ultra-high pressure conditions in the range from 150 MPa to 355 MPa. The free spray injected from a single nozzle injector is visualized by the Schlieren technique and the high speed camera. In particular, it is found that the shock waves are present and propagated along the edge of spray in the downstream direction. The measured spray penetration length increases gradually with the injection pressure, but its increasing rate is decreased as the injection pressure increases. The Sauter mean diameter is also no longer augmented for the injection pressures higher than 300 MPa. In addition, the three­dimensional numerical simulations are conducted for comparing the measurements with the predictions based on two different breakup models. The TAB model results show better agreements with experimental data than the WAVE model under ultra-high injection pressure conductions. Moreover, the simulation results show that the gas-phase pressure increases substantially in the vicinity of the spray tip region. It supports the experimental observation that the shock waves are formed at the front of spray tip and are propagated downstream.

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

A Study on the Characteristics of Fuel Spray (燃料噴霧特性 에 관한 硏究)

  • 진호근;이창식;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.