• 제목/요약/키워드: Injection conditions

검색결과 1,819건 처리시간 0.036초

사출성형 디스크의 진동특성 향상을 위한 공정조건 제어 (Control of Processing Conditions for Improvement of vibration Characteristics of Injection Molded Disk)

  • 신효철;남지근
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.615-621
    • /
    • 2006
  • Increased application of optical disks requires more improved dynamic stability of rotating disks. In this study, a new concept of controlling the processing conditions of injection molded disks was developed to improve vibration characteristics. The critical speed, which shows stiffness and dynamic stability of disk, is affected by the residual stress distribution; this varies as functions of distance from the gate and processing condition. The critical speed of disk was calculated with the initial stress taken into consideration, which was determined from injection molding simulation. Choosing melt temperature, mold temperature, filling speed and packing pressure as design parameters, critical speed is maximized with the method of response surface. It is shown that the stability of injection molded disk has been improved for the new condition obtained as a result of the study proposed.

열가소성 엘라스토머의 기계적 물성과 수축에 관한 연구 (A Study on the Mechanical Properties and Shrinkage of Thermoplastic Elastomer)

  • 한성렬;김준형;전승경;정영득
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.36-41
    • /
    • 2007
  • Thermoplastic elastomer(TPE) can be recycled and molded such as commercial thermoplastic. Therefore TPE has being widely applied on automobile, household and etc. in these days. This study shows the variation of mechanical properties and shrinkage on TPE moldings for variation of injection molding conditions such as injection pressure, holding pressure, melt temperature, mold temperature and etc. Mechanical properties in relation to tensile strength, hardness and shrinkage in connection with precision dimension of part are investigated. The tensile strength and shrinkage of the experimental TPEs are mainly influenced by injection pressure and melt temperature. All injection molding conditions scarcely affect on hardness. To verify the variation of tensile strength and shrinkage, morphology of TPE molding was scanned by the SEM. The morphology showed that as the melt temperature increased, the rubber particles on the TPE became smaller and widely were dispersed. This behavior of rubber particles influenced on the increase of tensile strength.

플라스틱의 사출성형조건이 응력완화에 미치는 영향 (The Effect of the Injection Molding Conditions of Plastics on the Stress Relaxation)

  • 정석주;황봉갑
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.19-25
    • /
    • 1998
  • In this study, proper injection molding condition has been studied through stress relaxation tests in order to experimentally investigate the effect of the condition on softening of mold product, using specimens produced under the different conditions according to the recommendation of resin manufactures. As a result, softening of the specimens was found to be strongly influenced by material melting temperature. The specimen with higher material melting temperature is found to have lower softening. However, softening of the specimen with lower mold temperature has an decrement, compared with other specimens. In particular, specimen with notch is influenced by mold temperature. The softening increase with higher injection speed and pressure. Finally in order to improve softening, material melting temperature, injection speed and injection pressure were found to be increased with low mold temperature.

  • PDF

엘라스토머 TPV의 사출성형조건에 따른 기계적 물성 (Behavior of elastomer TPVs' Mechanical Properties According to Injection Molding Conditions)

  • 한성렬;김준형;전승경;이규호;정영득
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.265-268
    • /
    • 2005
  • Thermoplastic elastormer (TPE) has many advantages such as high flexibility, high elasticity and high elongation, etc. TPE is easily molded such as plastic materials, therefore, many TPE parts are applied as home appliances and mechanical parts. However, if TPE is once molded, its mechanical properties are changed by injection molding conditions such as melt temperature, mold temperature, injection pressure and holding pressure, etc. In this study, the influences of the injection molding condition on the mechanical properties of thermoplastic vulcanizates(TPVs), which is one of the TPE, were investigated. By the injection molding experiment, as increasing the melt temperature, the tensile strength, shrinkage and hardness decreased. By the scanning electron microscope (SEM) analyzing the TPVs' crystallization, the morphology was affected by the melt temperature.

  • PDF

클린 디젤엔진 적용을 위한 솔레노이드 및 피에조 인젝터의 분무특성 (Spray Characteristics of Solenoid-driven and Piezo-driven Type Injectors for the Clean Diesel Engine Application)

  • 전문수
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.158-163
    • /
    • 2012
  • This paper presents spray characteristics of piezo-driven type common-rail injector and comparisons to those of solenoid-driven type. Experiments were conducted to measure spray penetraion and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. Injection conditions including injection pressure and energizing durations were varied in order to analyzing effects of injection conditions on spray characteristics. Furthermore, ambient pressures were increased for keeping ambient gas density close to in-cylinder pressure of diesel engine. Results showed that injection delay of piezo-driven type injector was much shorter than those of solenoid driven type and exhibited enhanced atomization performances.

상용 바이오 디젤의 분사 조건 변화에 따른 분무 특성 (Effects of Fuel Injection Conditions on Spray Characteristics of Commercial Biodiesel Fuel)

  • 홍연기;전문수
    • 한국분무공학회지
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2008
  • The objective of this study was to investigate the spray characteristics of commercial biodiesel fuel at various fuel injection conditions. To examine the effect of various factors on the development of a biodiesel sprays, experiments were conducted at the various injection pressures, ambient pressures and blending ratio of bio-diesel fuels. As a result of experimental study, it was shown that the increase of blending ratio of biodiesel had little influence on spray behaviors under applied fuel injection condition in this study. Because macroscopic characteristics of biodiesel-blended diesel fuel were almost same as that of petrodiesel fuels, it was found that the commercial biodisel is applicable to conventional diesel engine.

  • PDF

디젤엔진에서 Common-rail 시스템의 분사방법에 따른 기관성능 및 연소특성에 관한 실험적 연구 (Engine Performance and Combustion Characteristics on The Variation of Injection Characteristics in Diesel Engine with Common Rail System)

  • 백두성;오상기;한영출
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.52-57
    • /
    • 2003
  • Common rail injection system is flexible in injection timing, injection duration and pressure in engine. Many researches have reported on the merits in the application of common rail systems. This research investigated on characteristics and performance for single cylinder diesel engine with a common .ail injection system by varying major parameters such as injection timing, injection duration and common rail pressure. The injection timing and injection duration were controlled by electronic pulse generated. and common rail pressure were controlled by PCV driver. The 498cc single cylinder diesel engine was used in this experiment. All data for combustion pressure, injection timing and injection duration were recorded by Labview. Furthermore, this test was focused on how to optimize injection conditions.

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.

김치용기에서의 이산화탄소 농도 제어를 위한 주입 프로그램 조건 설정 (Programmed Conditions of Supplying Carbon Dioxide to Keep its Desired Concentration in Kimchi Container)

  • 안덕순;조민경;박수연;이동선
    • 한국포장학회지
    • /
    • 제25권2호
    • /
    • pp.31-35
    • /
    • 2019
  • Kimchi is a refreshing sour food which gives sour and carbonic acid taste of carbon dioxide produced during the fermentation process. So, carbon dioxide injection was tried to raise carbonic acid taste of kimchi stored in the airtight container. First, carbon dioxide injection times of a given gas supply system were determined experimentally to attain initial concentration of 80% for different solid/liquid ratios. Since carbon dioxide is dissolved in kimchi to decrease its concentration during storage, periodical carbon dioxide injection conditions were needed and determined to keep the $CO_2$ concentration above 70%. For the initial flushing to 80% $CO_2$ concentration in model system filled with water, the injection time ranged from 40 to 89 seconds for free volumes of 2-8 L. $CO_2$ injection conditions for the under-ripened storage at $10^{\circ}C$ consisted of longer time at more frequent cycles for watery kimchi than for Chinese cabbage kimchi. At $0^{\circ}C$ of subsequent ripened stage storage of watery kimchi, the periodical injection at 3 hour interval was required because of continuous dissolution of carbon dioxide. However, Chinese cabbage kimchi did not require subsequent $CO_2$ injection during the ripened state storage and needed only flushing to 80% $CO_2$ at time of the container opening and closing. These results can be used as basic information for the programmed control of $CO_2$ injection in the kimchi container system.

Analysis of the Phase Current Measurement Boundary of Three Shunt Sensing PWM Inverters and an Expansion Method

  • Cho, Byung-Geuk;Ha, Jung-Ik;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.232-242
    • /
    • 2013
  • To obtain phase currents information in AC drives, shunt sensing technology is known to show great performance in cost-effectiveness and therefore it is widely used in low cost applications. However, shunt sensing methods are unable to acquire phase currents in certain operation conditions. This paper deals with the derivation of the boundary conditions for phase current reconstruction in three-shunt sensing inverters and proposes a voltage injection method to expand the measurable areas. As the boundary conditions are deeply dependent on the switching patterns, they are typically analyzed on the voltage vector plane for space vector pulse width modulation (SVPWM) and discontinuous pulse width modulation (DPWM). In the proposed method, the voltage injection and its compensation are conducted within one sampling period. This guarantees fast current reconstruction and the injected voltage is decided so as to minimize the current ripple. In addition to the voltage injection method, a sampling point shifting method is also introduced to improve the boundary conditions. Simulation and experimental results are presented to verify the boundary condition derivation and the effectiveness of the proposed voltage injection method.