• 제목/요약/키워드: Injection conditions

검색결과 1,819건 처리시간 0.025초

이성분계 고분자 블렌드의 형태학에 미치는 사출 조건의 영향 (Effect of injection molding conditions on morphology of binary polymer blends)

  • 손영곤
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.165-169
    • /
    • 2008
  • 사출 조건이 이성분계 고분자 블렌드의 형태학에 미치는 영향을 관찰하기 위해 폴리페닐렌옥사이드 (PPO)/폴리아마이드 6 (PA 6) 블렌드를 선정하였다. 두께가 3.2 mm이고 한 변의 길이가 15 cm인 정사각형의 평판 형태의 사출물을 여러 사출 조건에서 제조하고 각 위치별로 파단시편을 제조하여 형태학을 관찰하였다. 그 결과 수지가 스크류, 노즐 스프루 게이트를 지나 최종위치에 자리 잡을 때까지 복잡한 온도, 전단력과 신장력의 영향으로 복잡한 형태학을 가짐을 알 수 있었다.

원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화 (Optimization of injection molding to minimize sink marks for cylindrical geometry)

  • 권윤숙;제덕근;정영득
    • Design & Manufacturing
    • /
    • 제2권2호
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화 (Optimization of Injection Molding to Minimize Sink Marks for Cylindrical Geometry)

  • 권윤숙;정영득
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.111-115
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

퍼지 논리 알고리즘에 의한 사출제품의 미성형 해결 (Trouble Shooting of Short Shot in Injection Molding By Using Fuzzy Logic Algorithm)

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be done by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient Quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

  • PDF

Fuzzy Logic-Based Moldability-Conforming System in Injection Molding

  • Kang, Seong-Nam;Huh, Yong-Jeong;Huh, Yong-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.49-52
    • /
    • 2002
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be dune by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구 (A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN))

  • 양동철;이준한;윤경환;김종선
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.

사출성형 시 성형조건이 웰드라인의 생성에 미치는 영향 (Effects of Injection Conditions on the Weld Line Creation in Injection Molding)

  • 김영모;박영민;장민규;정영득
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.1-5
    • /
    • 2012
  • Weld line in injection molded part is one of the defects in injection molding process. Weld line deteriorates not only appearance quality but mechanical property. In this study, ABS and PP were used as experimental materials. And weld line length, depth and strength have been examined according to the injection molding conditions. As the results of experimental studies, weld line length increased as flow rate increases for all materials. And the flow rate is most influenced to the creation of weld line length. Also weld line strength increased, as flow rate and melt temperature increase for all materials. The whole experiment results was similar to CAE analysis results.

  • PDF

사출성형품의 공정 조건에 따른 내환경응력균열 특성에 관한 연구 (Influence of Molding Conditions on Environmental Stress Cracking Resistance of Injection Molded Part)

  • 최두순;김홍석
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.173-178
    • /
    • 2011
  • Environmental Stress Cracking(ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers. The exposure of polymers to liquid chemicals tends to accelerate the crazing process, initiating crazes at stresses that are much lower than the stress causing crazing in air. In this study, ESC of acrylonitirile butadiene styrene(ABS) was investigated as a function of the molding conditions such as injection velocity, packing pressure, and melt temperature. A constant strain was applied to the injection molded specimens through a 1.26% strain jig and a mixture of toluene and isopropyl alcohol was used as the liquid chemical. In order to examine the effects of the molding conditions on ESC, an experimental design method was adopted and it was found that the injection velocity was the dominant factor. In addition, predictions from numerical analyses were compared with the experimental results. It was found that the residual stress in the injection molded part was associated with the environmental stress cracking resistance (ESCR).

사출성형조건이 HIPS 수축율에 미치는 영향 (The effect of the injection molding conditions on the shrinkage of HIPS)

  • 차백순;이병옥;최권일;구본흥;박형필
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.259-264
    • /
    • 2005
  • The shrinkage of the product in injection molded part occurs due to the volume change with variation of temperature and pressure and is influenced by the processing conditions of injection molding. Mold designers greatly concerns the shrinkage of parts for a high dimensional accuracy. In this study, bar type HIPS specimen with 15x19 grid on the surface was tested. The amount of shrinkage of flow and transverse directions was examined with respect to the injection molding conditions such as melt temperature, injection speed, holding pressure, mold temperature and cooling time. As the packing pressure increased, the difference of shrinkage of both directions is decreased and the absolute shrinkage value also decreased.

  • PDF

사출성형시 성형조건이 웰드라인의 생성에 미치는 영향 (Effects of Injection Conditions on the Weld Line Creation in Injection Molding)

  • 김영모;박영민;장민규;정영득
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.115-119
    • /
    • 2008
  • Weld line in injection molded part is one of the defects in injection molding process. Weld line deteriorates not only appearance quality but mechanical property. In this study, ABS and PP were used as experimental materials. And weld line length, depth and strength have been examined according to the injection molding conditions. As the results of experimental studies, weld line length increased as flow rate increases for all materials. And the flow rate is most influenced to the creation of weld line length. Also weld line strength increased, as flow rate and melt temperature increase for all materials. The whole experiment results was similar to CAE analysis results.

  • PDF