• Title/Summary/Keyword: Injection Simulation

Search Result 1,024, Processing Time 0.028 seconds

Development of New GAIM Process for Faster Cooling and Material Reduction (빠른 냉각과 재료절감을 위한 새로운 가스성형 프로세스 개발)

  • 한성렬;박태원;곽진관;김철주;하만영;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.852-855
    • /
    • 2003
  • Gas-Assisted Injection Molding(GAIM) process, that can be used to provide a hollow shape in a molding, is a variant of the conventional injection molding process. GAIM has many advantages such as reduction of material, sink mark. warpage. and lower injection pressure. Thus, GAIM has been widely applied in the industry to make moldings with a hollow channel such as handles, TV frames and so on. On the other hand, GAIM has some disadvantages such as slow cooling time and flow marks. In the disadvantages, hot gas core causes slow cooling of a molding and the overflow. which is to prevent flow mark. is waste of materials. To solve these problems, we developed a new GAIM system that we called RGIM(Reverse Gas Injection Molding). The RGIM has two special units; one is the overflow buffer, which is used for reduction of a material, and the other tile air unit, which is used for faster cooling of a molding. We conducted an experiment and simulation to verify the efficiency of the RGIM system. Through experiments and simulation, we confirmed the effectively operating of the RGIM system and extracted the optimum process conditions.

  • PDF

Evaluation of Optical Performance for an Aspheric Lens Connecting with FE Analysis of Injection Molding (사출성형 유한요소해석과 연계한 비구면렌즈의 광학적 특성평가)

  • Park, K.;Um, H.J.;Kim, J.P.;Joo, W.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.25-30
    • /
    • 2007
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting a finite element (FE) analysis of injection molding with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a new.ay tracing scheme is proposed in conjunction with a FE analysis of the injection molding. A numerical scheme is developed to calculate ray paths on every element layer with more realistic information of the refractive indices which can be obtained through the FE analysis. This information is then used to calculate the ray paths based on the FE mesh of which nodal points have unique index values. The proposed tracing scheme is implemented on the tracing of an aspheric lens, and its validity is ascertained through experimental verification.

Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance (노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

Warpage Minimization in the Injection Molded Decorating Panel of Monitor by Considering Robustness (강건성을 고려한 모니터 장식패널 사출품의 휨 최소화)

  • Kwon O. K.;Park J. C.;Kim K. M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An optimal robust design methodology has been developed to minimize the warpage in a decorating panel of monitor molded by the plastic injection. For the associated methodology, the Taguchi's Design Of Experiment (DOE) based on orthogonal arrays and Signal-to-Noise Ratio is combined with commercial simulation tools f3r injection molding. An optimal robust design solution is statistically resulted from the computational simulation. The related experiment was done for evaluations of the warpage in the decorating panel part of monitor. This research showed that the warpage under the applied optimal design conditions was comparatively reduced.

The Effect of Nozzle's Location & Injection Angle on the Characteristics of Air Flow and $CO_2$ Extinguishant Transfer (노즐 위치 및 분사각이 공기유동 및 $CO_2$ 소화제 전달특성에 미치는 영향)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.472-484
    • /
    • 2002
  • To analyze the characteristics of air flow and $CO_2$ extinguishant transfer when extinguishant is injected into a closed space similar to marine engine room, a numerical simulation on a space was performed. Flow fields and $CO_2$ concentration fields are calculated according with the variation of the location & injection angle of nozzles. The results of simulation showed that the pattern of recirculation flow was affected greatly with the location & injection angle of nozzles and such a recirculation flow accelerated mass transfer of $CO_2$ and greatly affected the diffusion process of $CO_2$ extinguishant. It is considered that this result of this study can be useful to designing the arrangement of nozzles for the $CO_2$ fire fighting equipments in a marine engine room.

Influence of the Cyclic Parameters on the Nitric Oxide Formation in the diesel Engine

  • Rosli Abu Bakar
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1998
  • This study describes the influence of combustion parameters on the nitric oxide emission, such as injection timing, air flow rate, injected amount of fuel, and compression ratio of engine. In order to determine the influence factors on the nitric oxide emission, the experiment were investigated with various parameters of engine cycle. According to the results of this study, the retardation of injection timing and the increases of airflow rate, and the decreases of fuel injection amount reduce the nitric oxide concentration in the exhaust emissions. Also, the increases of compression ration of engine increase in the concentration of nitric oxide formation in the combustion chamber. The results of this study give a guideline to decrease the nitric oxide formation by using the simulation program.

  • PDF

A Study for Quality of Stabilization of Ball-Seat - I (볼시트 품질 안정화에 관한 연구 - I)

  • 김인관;최준영;김대식;정영득;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.350-353
    • /
    • 2001
  • Due to the widen demand of plastic part in automobiles, more accurate numerical simulation works are needed to find optimum molding process like filling fiber orientation pressure control. Therefore, C-mold software was applied for the simulation of injection molding process and cooling process in this research. The purpose of this study is developing a ball seat which made by injection process with PA66 resin and it is applied to the automobile suspension system. It must secure low friction, wear resistance and dimensional accuracy. Specially this study aims to get the quality stabilization of injection molded bass-seat parts.

  • PDF

Modeling of Steam Injection Heater for Fresh Water Generator (조수기용 증기분사 열교환기에 대한 모델링)

  • Hong, Cheol-Hyun;Lee, Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.877-885
    • /
    • 2008
  • Steam injection heater is the most widely used method for fresh water generator throughout industry. This method is often chosen because of its simplicity. The steam bubbles condense and give up their heat to the surrounding liquid. Experimental study on steam injection heater has been performed in order to find the effect of major parameter. And conservation equation and Bernoulli obstruction theory are used for numerical simulation model of vapor flow-rate. Qualitative comparisons between simulations and measurements show a good agreement and the simulation models are thereby verified.

Phenomenological Combustion Modeling of a Direct Injection Diesel Engine with In-Cylinder Flow Effects

  • Im, Yong-H.;Huh, Kang-Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.569-581
    • /
    • 2000
  • A cycle simulation program is developed and its predictions are compared with the test bed measurements of a direct injection (DI) diesel engine. It is based on the mass and energy conservation equations with phenomenological models for diesel combustion. Two modeling approaches for combustion have been tested; a multi-zone model by Hiroyasu et al (1976) and the other one coupled with an in-cylinder flow model. The results of the two combustion models are compared with the measured imep, pressure trace and NOx and soot emissions over a range of the engine loads and speeds. A parametric study is performed for the fuel injection timing and pressure, the swirl ratio, and the squish area. The calculation results agree with the measured data, and with intuitive understanding of the general operating characteristics of a DI diesel engine.

  • PDF

Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding (사출압축성형에서의 유동에 의한 복굴절 해석)

  • Lee H.-S.;Isayev A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF