• Title/Summary/Keyword: Injection Quantity

Search Result 270, Processing Time 0.029 seconds

Examination on Combustion Quality Analysis of Residue Heavy Fuel Oil and Improvement of Combustion Quality Using Pre-injection (중질 잔사유의 연소성 분석과 보조 분사에 의한 연소성 향상에 관한 검토)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • Due to the development of the petroleum refining technology and continuously increased demand from markets, a quantity of gasoline and diesel oil produced from a restricted quantity of crude oil has been increasing, and residual fuel to be used at marine diesel engines has been gradually becoming low quality. As a result, it was recently reported that trouble oils which cause abnormal combustion such as knocking with extreme noise and misfire from internal combustion engines were increasing throughout the world. In this study, an author investigated ignitability and combustion quality by using combustion analyzer with constant volume(FCA, Fuel Combustion Analyzer) and middle speed diesel engine about MDO(Marine Diesel Oil), HFO(Heavy Fuel Oil), LCO(Light Cycle Oil) and Blend-HFO which was blended LCO of 1000 liters with HFO of 600 liters. Moreover, for betterment of ignitability and combustion quality of injected fuels, multi-injection experiment was carried out in the diesel engine using Blend-HFO. According to the results of FCA analysis, ignitability and combustion quality was bad in the order of MDO

Improment of Diesel Combustion using multiple injection under Cold Start Condition (냉시동 조건에서 디젤 연소 특성 및 연소 개선에 대한 연구)

  • Lee, Haeng-Soo;Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.711-717
    • /
    • 2017
  • Startability and harmful emissions are the main issues in diesel engine development under cold conditions. The characteristics of combustion with multiple injection were investigated under cold start conditions. For quantitative analysis, the in-chamber pressure profile was measured and combustion visualization using direct imaging was accomplished. With multiple injection, the peak in-chamber pressure and heat release rate were increased compared to single injection. In addition, the period of flame luminosity detection was shortened using multiple injection. Combustion by main injection was improved with an increase in heat released by pilot combustion when the pilot injection quantity was increased. Finally, an increase in injection pressure also showed the possibility of combustion improvement. On the other hand, an increase of in the pilot injection quantity and injection pressure can cause an increase in harmful emissions, such as HC and CO due to wall wetting. Therefore, more sensitive calibration will be needed when applying a multiple injection strategy under cold start conditions.

Comparisons of Diesel and DME Fuel in Macroscopic Spray Characteristics (디젤 및 DME 연료의 거시적 분무특성 비교)

  • Park, Junkyu;Chon, Munsoo;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.205-209
    • /
    • 2012
  • This study focused on comparing macroscopic characteristics of DME and diesel fuel experimentally. DME fuel is one of the most promising alternative fuels because of its superiority in atomization characteristic and clearness in terms of exhaust gas compared with existing fossil fuels. In addition, DME fuel has high cetane number so it could be applied to compression ignition engine. However because DME fuel exists in gas phase at room temperature and atmospheric pressure, and it corrodes rubber parts of fuel line, DME fuel is hard to apply to commercial vehicles. To establish knowledge about DME fuel and furthermore, to develop commercial DME vehicles such as passenger cars, many research have been proceeded steadily. The present study, by comparing spray characteristics of DME fuel to those of diesel fuel, improved atomization characteristics in DME were revealed. Injection quantity measurement and spray visualization experiment were progressed and it was revealed that DME fuel shows small injection quantity than that of diesel fuel and axial development of spray in terms of spray tip penetration decreases when DME fuel was injected.

Characteristics Analysis of Flex Link according to Mold Clamping Force in Injection Molding Machine (형체력에 따른 사출성형기 플렉스링크의 특성 분석)

  • Jung, Hyun Suk;Yoo, Joong Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Reproducibility of injection molding machines are studied at the study of this time. We applied computer aided engineering program so it could generate clamping force, about 1,500 kN, to the nozzle center part of flex link in tie-bar and at this time, we made sure condition of stress distribution and transformation quantity in flex link. The result of computer aided engineering transformation quantity was confirmed that transformation of top area was 247~257 kN and bottom areas was 273~279 kN and also was confirmed that the stresses are distributed in a range of 57~750 $N/mm^2$ from top to the bottom of the surface. This time we could confirm the condition of transformation quantity and stress distribution by enforcing the previously used structure analysis of flex link. And we utilized the reference data to establish important point of section for non destructive test overhaul.

A Study on the Characteristics of NOx Reduction by Urea-SCR System for a Light-Duty Diesel Engine (Urea-SCR 시스템에 의한 소형 디젤엔진의 NOx 저감 특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Choi, Joo-Yol;Choi, Jae-Sung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.521-527
    • /
    • 2005
  • The effects of an urae injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine are investigated experimentally. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection must be precisely metered and then I used the urea syringe pump. I have tested 4 kinds of items that were with the EGR base engine and without the EGR engine. Then I tested each urea-SCR(Selective Catalytic Reduction) system. As the results, I can caculate the SUF(Stoichiometric Urea Flow) and visualize the NOx results by variation of engine speed and engine load. Also, I can make the NOx map. Therfore, I knew that NOx reduction effects of the urea-SCR system without the EGR engine were better than the with EGR base engine except of low load and low speed.

  • PDF

1-D Model to Estimate Injection Rate for Diesel Injector using AMESim (디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축)

  • Lee, Jinwoo;Kim, Jaeheun;Kim, Kihyun;Moon, Seoksu;Kang, Jinsuk;Han, Sangwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

A Study on the Engine Performance and Exhaust Emission with Intake Port Methanol Injection in a DI Diesel Engine (직분식 디젤기관의 메탄올 흡기분사에 의한 기관성능과 배기배출물에 관한 연구)

  • 김명수;라진홍;안수길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.249-256
    • /
    • 2000
  • In order to investigate the effectiveness of methanol, which has high latent heat of evaporation and oxygen contents, for DI diesel engine performance and exhaust emission, the methanol was injected at the suction port of DI diesel engine. The injector used for test was conventional gasoline engine injector and controlled the quantity of methanol per cycle by the power supply controller which designed specially for injector. The results shown that the maximum pressure point was delayed, the value of maximum pressure was decreased, and the concentrations of both NOx and Soot were decreased, as the methanol injection quantity increased, and also the thermal efficiency of engine injected methanol under the high load condition was similar to no methanol injection but under the medium load condition was decreased within the experimental conditions.

  • PDF

A Study on the Smoke Reduction of Methanol-Diesel Engine (메탄올-디젤기관의 스모크 저감에 관한 연구)

  • Han, Seong-Bin;Mun, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2421-2429
    • /
    • 1996
  • The objective of this research is to apply effect of the pre-mixed combustion quantity and smoke emission in diesel engine. According as air fuel ratio is increased, emission of smoke concentration is linearly reduced. As Injection timing is advanced, smoke concentration is remarkably reduced. It is considered to be the primary cause of the increase in the premixed combustible mixture during long ignition delay period with advancing injection timing. Smoke is increased with increasing engine speed, so it is considered to be the primary cause of the increase of the mass of fuel injected. Smoke is decreased according to the increase of methanol volume ratio. It is considered that the primary cause of the increase in the quantity of pre-mixed combustion.

Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition (낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성)

  • Jeun, Haegwang;Lee, Kyung-Hwan;Choi, Myungsik;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

A Study on Optimal Solution of Short Shot Using Modular Fuzzy Logic Based Neural Network (MENN) (모듈형 퍼지-신경망을 이용한 미성형 사출제품의 최적 해결에 관한 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.465-469
    • /
    • 2001
  • In injection molding short shot is one of the frequent and fatal defects. Experts of Injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is most economic way in time and cost. However, it is difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a modular fuzzy neural network (MFNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mo이 temperature is recommenced by the NFNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part. and appropriate mold temperature is recommend repeatedly through the NFNN.

  • PDF