• 제목/요약/키워드: Injection Molding process

검색결과 905건 처리시간 0.026초

소형 공기청정기 하우징의 성형성 향상을 위한 런너시스템 설계 및 스크류 전진 거리 예측 (Design of Runner System and Prediction of Moving Distance of the Screw for the Improvement of Formability of a Housing Part of Small-Size Air Cleaner)

  • 김동인;이호진;안동규
    • 한국정밀공학회지
    • /
    • 제33권12호
    • /
    • pp.1021-1030
    • /
    • 2016
  • The runner system of the injection mould and the injection volume of the injection molding process greatly affect the quality of the produced part. The goal of this paper is the design of the runner system and the prediction of the injection volume for the injection moulding of a housing part of small-size air cleaner to improve the formability through the three-dimensional injection moulding analysis. The effects of the runner system of the mould on the injection moulding characteristics are investigated. From the results of the investigation, a proper design of the runner system with uniform filling characteristics and the minimized defect formation is obtained. In addition, the influence of the moving distance of the screw on filling characteristics, weldline formation and deformation characteristics is examined. From the results of the examination, an appropriate moving distance of the screw for the housing part of small-size air cleaner is estimated.

Ceramic 재질을 이용한 자동차용 대형 디젤엔진 Valve Lifter 연구 II. 사출성형에 의한 탄화규소질 Valve Lifter 개발 (Studies of Valve Lifer for Automotive Heavy Duty Diesel Engine by Ceramic Materials II. Development of SiC Valve Lifter by Injection Molding Method)

  • 윤호욱;한인섭;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제35권2호
    • /
    • pp.172-179
    • /
    • 1998
  • Valve lifter namely tappet is supported by lifter hole which is located upper side of camshaft in cylinder block transforms rotatic mvement of camshaft into linear movement and helps to open and shut the en-gine valve as an engine parts. The face of valve lifter which is continuously contacting with camshaft brings about abnormal wears such as unfair wear and early wear because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears therefore The valve lifter cast in me-tal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance As a results the optimum process conditions like injection condition mixture ratio and debonding process could be established. After sintering fine-sinered dual microstructure in which prior ${\alpha}$-SiC matches well with new SiC(${\beta}$-SiC) produced by reaction among the ${\alpha}$-SiC carbon and silicon was obtained. Based on the study it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100-1200 bending strength (300-350 Pa) fracture toughness(1.5-1.7 Mpa$.$m1/2) Through engine dynamo test-ing SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such as early fracture unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resis-tance relaibility and lightability.

  • PDF

광학용 사출성형품에 사용되는 고유동성 폴리카보네이트의 재사용에 따른 광학적, 기계적 물성 변화에 대한 연구 (A Study on the Change of Optical and Mechanical Properties by Reprocessing for High Melt-Indexed Polycarbonate Used in Injection Molded Optical Parts)

  • 이준한;강정진;윤경환;김종선
    • 소성∙가공
    • /
    • 제27권4호
    • /
    • pp.211-221
    • /
    • 2018
  • To estimate the recycling feasibility of high melt-indexed polycarbonate, 3.5 inch LGP, tensile, flexural and impact specimens were injection-molded and the LGP was shredded into scraps. The scraps were injection-molded again and this process was repeated for 4 times. Properties of the sample, i.e., optical properties, mechanical properties and number average molecular weight were measured at each cycle. Based on the results, as the number of reprocessing increased, transmittance decreased at low wavelength and color coordinate was changed systematically to yellow. Yellow index increased more than twofold during 4 recycling processes. On the other hand, the number average molecular weight decreased during recycling processes. Flexural and impact strength showed no tendency according to the number of recycling, but tensile strength decreased sharply after the third recycling process. Based on these properties, it was concluded that the number of recycling for high melt-indexed polycarbonate allowed in this study was one.

IML 성형과정에 따른 잔류응력 및 열 충격에 의한 변형 예측 (Prediction of Residual Stress Caused by IML Process and Deformation Due to Thermal Impact)

  • 이재원;장유진;신승원;박승호;정하승
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.375-382
    • /
    • 2010
  • 본 논문에서는 In-Mold Labeling(IML) 공정을 이용한 제품생산 과정에서 발생하는 잔류응력과 열변형을 예측할 수 있는 해석모델을 개발하였다. IML 은 선 공정된 필름을 금형에 넣은 후 수지를 사출하여 제품을 생산하는 방법으로, 일반적인 사출성형 공정방법에 비해 뛰어난 색감을 구현할 수 있을뿐 아니라, 반영구적 보존 등의 다양한 장점을 얻을 수 있다. 반면, IML 공정을 이용한 제품 생산의 경우 필름박리 등의 다양한 불량 현상이 발생하기도 하는데, 이 중 필름박리 현상의 주요한 원인 중 한가지로 지목되는 열 변형 현상을 수치해석을 통해 예측하고, 실제 실험결과와 비교하여 연구의 신뢰성을 검증하였다. 이는 IML 공정을 통해 생산되는 제품의 초기설계 단계로부터 필름박리 및 열 변형을 예측하는데 활용될 수 있을 것으로 기대된다.

적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구 (Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing)

  • 진재호;권다인;오재환;강도현;김관오;윤재성;유영은
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

WC-Co계 분말사출성형에서 초임계$CO_2$에 의한 결합제 제거 (Binder Removal by Supercritical $CO_2$ in Powder Injection Molded WC-Co)

  • 김용호;임종성;이윤우;김소나;박종구
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.91-97
    • /
    • 2001
  • The conventional debinding process in metal injection molding is very long time-consuming and unfriendly environmental method. Especially, in such a case of injection molded parts from hard and fine metal powder, such as WC-Co, an extremely long period of time is necessary in the conventional slow binder removal process. On the other hand, supercritical debinding is thought to be the effective method which is appropriate to eliminate the aforementioned inconvenience in the prior art. The supercritical fluid has high diffusivity and density, it can penetrate quickly into the inside of the green metal bodies, and extract the binder. In this paper, super-critical debinding is compared with wicking debinding process. Wax-based binder system is used in this study. The binder removal rate in supercritical $CO_2$ have been measured at $65^{\circ}C$, 75$^{\circ}C$ in the pressure range from 20 MPa to 28 MPa. Pores and cracks in silver bodies after sintering were observed using SEM When the super-critical $CO_2$ debinding was carried out at 75$^{\circ}C$, almost all the wax (about 70 wt% of binder) was removed in 2 hours under 28 MPa and 2.5 hours under 25 MPa.

  • PDF

반응표면 분석법에 의한 사출공정 및 품질 모니터링에 관한 연구 (A Study on Injection Molding Process and Quality Monitoring by Response Surface Analysis)

  • 민병현;이경돈;우병길
    • 산업공학
    • /
    • 제9권1호
    • /
    • pp.13-24
    • /
    • 1996
  • Quality of injection molded parts is dependent on both mold design and processing conditions. From the mold design point of view, an optimal shrinkage should be used to compensate the shrinkage of molded parts. From the processing point of view, it is important to analyze the priority of processing conditions because a number processing conditions affect the quality of molded parts. Processing analysis employing the design of experiment was performed, and the shrinkage of molded part was considered as a characteristic parameter to improve the quality. As the result of the analysis of variance on SN ratio of a characteristic value, injection speed and bolding pressure were selected as two effective process parameters. Regression analysis on shrinkage and processing conditions was carried out, and an optimal processing condition was obtained by the response surface analysis. Shrinkage at the optimal condition could be used to reduce the number of try-cut at the step of mold making. The ranges of indirect control parameter, such as maximum cavity pressure or weight, measured at the optimal processing condition were used for monitoring the quality of molded parts in process.

  • PDF

사출성형의 충전시 고분자용융액의 압축성이 유동장과 단섬유 배향에 미치는 영향 (Effect of Compressibility on Flow Field and Fiber Orientation in the Filling Stage of Injection Molding)

  • 이상찬;고진;윤재륜
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.217-226
    • /
    • 1998
  • 단섬유 강화 고분자의 사출성형시 고분자 수지의 유동에 의하여 섬유배향이 필연적으로 일어나며, 섬유배향에 의한 이방성 (anisotropy)은 최종성형물의 품질과 기계적인 특성 등에 많은 영향을 미친다. 사출공정 중에서 충전과정(filling stage)은 섬유배향에 지배적인 역할을 하므로, 충전과정의 유동장을 정확하게 해석하는 것은 매우 중요하다. 형상이 복잡한 캐비티(cavity)와 다중 캐비티에서는 먼저 충전이 완료되어 현탁액(suspension)이 압축을 받고 있는 영역들이 존재하게 된다. 기존의 방법처럼 사출성형의 충전과정을 비압축성 유동으로 가정하면 정확한 유동장을 계산할 수 없다. 본 연구에서는 충전과정에서 압축성을 고려한 혼합 유한요소법/유한차분법을 이용하여 유동장을 계산하였다. 충전이 완료되는 순간에서, 이차배향텐서에 대한 배향변화방정식을 4차 Runge-Kutta 방법을 이용하여 해석함으로써 3차원 섬유배향장을 예측하였다. 충전시간이 다른 4개의 캐비티를 갖는 금형을 제작하여 충전과정에서 압축성 효과를 고려한 수치해석 결과가 실험과 잘 일치함을 보였다. 또한, 압축성과 비압축성 유동장에서 이론적으로 계산된 섬유배향의 차이를 정성적 및 정량적으로 비교하였다.

  • PDF

분말사출성형에서 초임계유체를 이용한 탈지공정 (Debinding Process Using Supercritical Fluids in Metal Powder Injection Molding)

  • 김용호;임종성;이윤우;박종구
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of the present study is to investigate the method decreasing debinding time as well as lowering operation condition than pure supercritical $CO_2$ debinding by using cosolvent or binary mixture of propane + $CO_2$. First method is to add cosolvent, such as n-hexane, DCM, methanol, 1-butanol, in supercritical $CO_2$. In case of adding cosolvent, we were found the addition of non-polar cosolvent (n-hexane) improves dramatically the binder removal rate (more than 2 times) compared with pure supercritical $CO_2$ debinding, second method is to use mixture of supercritical propane + $CO_2$, as solvent. In case of using mixture of supercritical propane + $CO_2$, the rate of debinding speeded up with increasing of pressure and concentration of propane at 348.15 K. It was found that addition of cosolvent (e.g., n-hexane, DCM) and binary mixture propane + $CO_2$ for supercritical solvent remarkably improved binder removal rate for the paraffin wax-based binder system, in comparison with using pure supercritical $CO_2$.

기계적 합금방법으로 제조한 극초미세 조직의 W-Cu 복합분말의 금속사출성형 연구 (Metal Injection Molding of Nanostructured W-Cu Composite Powders Prepared by Mechanical Alloying)

  • 김진천
    • 한국분말재료학회지
    • /
    • 제5권2호
    • /
    • pp.145-153
    • /
    • 1998
  • W-Cu alloy is attractive to thermal managing materials in microelectronic devices because of its good thermal properties. The metal injection molding (MIM) of W-Cu systems can satisfy the need for mass production of the complex shaped W-Cu parts in semiconductor devices. In this study, the application of MIM process of the mechanically alloyed (MA) W-Cu composite powders, which had higher sinterability were investigated. The MA W-Cu powders and reduction treated (RT) powders were injected by using of the multicomponent binder system. The multi-stage debinding cycles were adopted in $N_2$ and $H_2$ atmosphere. The isostatic repressing treatment was carried out in order to improve the relative density of brown parts. The brown part of RT W-Cu composite powder sintered at 110$0^{\circ}C$ had shown the higher sinterability compared to that of MA powder. The relative sintered density of all specimens increased to 96% by sintering at 120$0^{\circ}C$ for 1 hour. The relationship between green density and the sintering behavior of MA W-Cu composite powder was analyzed and discussed on the basis of the nanostructured characteristics of the MA W-Cu composite powder.

  • PDF