• 제목/요약/키워드: Injection Molding process

검색결과 903건 처리시간 0.03초

사출성형에 대한 충전과 보압과정의 영향에 관한 연구 (A Study on the Effects of Filling and Packing Phases on the Injection Modeling)

  • 김현필;김용조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.112-118
    • /
    • 2002
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis fur the filling and packing phases. Molding troubles like flow mark, weld line, sink mark, short shot and warpage can be caused by these injection molding process factors. Among them, the short shot was caused by that the packing pressure could not reach properly to the filling end part in the packing phase and hence the flow rate could not be supplied to the full. In addition, as the flow rate for the volumetric shrinkage during the frozen phase could not be supplied properly by the packing pressure, the short shot appeared. Here, the volumetric shrinkage reduced with increasing the packing pressure and also the warpage of molded part increased with increasing the packing pressure.

  • PDF

사출압축성형 공정에 대한 유한요소 해석 (Finite Element Analysis of Injection/Compression Molding Process)

  • 이호상
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

Pickup 렌즈의 사출조건이 복굴절 및 굴절율에 미치는 영향에 관한 연구 (A Study on Influence of Parameters and Characteristics in the Injection Process on the Birefringence and Refractive Index for Pickup Lens)

  • 이승준;현동훈
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.21-28
    • /
    • 2007
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for birefringence and refractive index for pickup lens. This paper presents the birefringence and refractive index reduced with increasing the holding pressure and also the holding pressure time. And there are interaction with birefringence and fill time in the injection process. The optimal conditions through DOE are validated by using injection molding analysis.

고밀도 패턴드 미디어 성형에 관한 연구 (Replication of High Density Patterned Media)

  • 이남석;최용;강신일
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Center-gated 디스크에 대한 사출/압축 성형공정의 수치적 모델링 (Numerical Modeling of Injection/Compression Molding for Center-gated Center-gated Disk (Part II))

  • 김일환;박성진;정성택;권태현
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.302-310
    • /
    • 1998
  • In the accompanying paper, part I, we have presented the physical modeling and the associated numerical analysis of injection molding process with a compressible viscoelastic fluid model. In part II, the effects of compression stage in the injection/compression molding process are presented. Numerical results showed that the injection/compression molding process reduced birefringence as compared with the injection molding process. In this respect, one can conclude that the injection/compression molding process is more suitable for manufacturing the precise optical products than the injection molding process. In the distribution of birefringence, the effect of packing procedure in injection/compression molding process was found to be similar to that in injection molding process. From the numerical results, we found that birefringence becomes smaller as the melt temperature gets higher and the closing velocity of the mold gets smaller with the flow rate and the mold temperature affecting the birefringence insignificantly. As far as the distribution of density is concerned, the flow rate, the melt temperature, and the closing velocity of the mold had insignificant effect on the distribution of density in comparison with the mold temperature.

미세패턴 성형을 위한 사출 압축 성형 공정 기술 (Injection/compression molding for micro pattern)

  • 유영은;김태훈;김창완;제태진;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.100-104
    • /
    • 2005
  • The injection molding is very effective process for various plastic products due to its high productivity. It is also good fur precise products like optical parts. Various thermoplastic materials are also available with this injection molding process. In recent, however, as the overall size of the product increases and micro or nano scale of patterns are applied to the products, we now have some problems such as low fidelity of the replication of the pattern, high molding pressure, or warpage from the in-mold stress. Injection/compression molding is studied to overcome those problems in molding large thin plate with micro pattern array on its surface. An injection compression mold is designed to 3 pieces mold for side gate. We install 4 pressure transducers and 9 thermocouples to measure the melt pressure and surface temperature in the cavity during the process. As a result, the maximum molding pressure for injection compression molding is reduced to 1/3 compared to injection molding and the uniformity of the pressure in the cavity is enhanced by about 15%.

  • PDF

급속 가열에 의한 박육 사출성형의 유동특성 개선 (Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating)

  • 김병훈;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

Modeling of the filling process during resin injection/compression molding

  • Chang, Chih-Yuan
    • Advanced Composite Materials
    • /
    • 제16권3호
    • /
    • pp.207-221
    • /
    • 2007
  • The filling process of resin injection/compression molding (I/CM) can be divided into injection and compression phases. During the resin injection the mold is kept only partially closed and thus a gap is present between the reinforcements and the upper mold. The gap results in preferential flow path. After the gap is filled with the resin, the compression action initiates and forces the resin to penetrate into the fiber preform. In the present study, the resin flow in the gap is simplified by using the Stokes approximation, while Darcy's law is used to calculate the flow field in the fiber mats. Results show that most of the injected resins enter into the gap during the injection phase. The resin injection time is extremely short so the duration of the filling process is determined by the final closing action of the mold cavity. Compared with resin transfer molding (RTM), I/CM process can reduce the mold filling time or injection pressure significantly.

실험계획법을 이용한 대형 사출물의 사출성형 해석과 검증에 관한 연구 (A Study on Injection Molding Analysis and Validation of Large Injection-Molded Body Using Design of Experiment)

  • 이형수;이희관;양균의
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.109-114
    • /
    • 2005
  • The large injection molded parts technology such as instrument panel, front and rear bumper are presented for a precision molding. Some lead time and cost are required to product these part from design to mass product. Recently, CAE is widely used in product design, mold design and analysis of molding conditions to reduce time and cost. The optimal molding conditions can be obtained by DOE(Design of Experiment). The optimal design applications with CAE and DOE have been used in small molded parts. However, application to the large molded body is not reported. In this paper, optimization of injection molding process is studied for quality control in mass production of automobile bumper. Mold temperature difference is chosen through robust design of injection molding process, the molding process being optimized in term of shrinkage and deflection. The optimal conditions through DOE are validated by using injection molding analysis.

  • PDF

Simulation and Experiment of Injection Molding Process for Superalloy Feedstock

  • Jung, Im Doo;Kim, Youngmoo;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2015
  • Powder injection molding is an important manufacturing technology to mass produce superalloy components with complex shape. Injection molding step is particularly important for realizing a desired shape, which requires much time and efforts finding the optimum process condition. Therefore computer aided engineering can be very useful to find proper injection molding conditions. In this study, we have conducted a finite element method based simulation for the spiral mold test of superalloy feedstock and compared the results with experimental ones. Sensitivity analysis with both of simulation and experiment reveals that the melt temperature of superalloy feedstock is the most important factor for the full filling of mold cavity. The FEM based simulation matches well the experimental results. This study contributes to the optimization of superalloy powder injection molding process.