• 제목/요약/키워드: Injection Molding process

검색결과 903건 처리시간 0.031초

블로우팬의 사출성형공정에 관한 연구 (A Study on Injection Molding process for Manufacturing about Blower-fan)

  • 김병곤;민병현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.316-319
    • /
    • 2002
  • Injection mold is a manufacturing process used to produce parts of complicated shape at a low cost. Many factors affect the quality of injection molded part during injection molding process. A study on the optimization of injection mold is progressed by using a simulation software like Moldflow. Filling, packing and cooling phases of injection molding processes are analyzed according to the mold design considering the shrinkage of molded part, the degree of filling rate and the wearing of a mold. Taguchi method is applied to analyze the significance of processing parameters and the dynamic characteristics according to the variation of processing parameters. From the results, the mold temperature and packing pressure influenced strongly the shrinkage of injection molded part.

  • PDF

다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구 (A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure)

  • 이효은;이준한;김종선;조구영
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

사출성형과정의 잔류응력을 고려한 표준인장시편의 선형구조해석 (Linear Structural Analysis of Standard Plastic Tensile Specimen with Residual Stress Induced by Injection Molding)

  • 이도명;한병기;이성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.579-580
    • /
    • 2006
  • In this study, an injection mold of tensile test specimen was manufactured by international standard. Pressure and temperature in the cavity of the injection mold was measured by sensors. Simulation of injection molding process was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress induced by injection molding analysis. Normalized elastic coefficient of tensile test was compared with that of structural analysis. It was shown that the residual stress induced by injection molding has an effect on both the experiment of tensile test and linear structural analysis.

  • PDF

대면적 쾌속 사출압축성형을 위한 금형설계 최적화 (A study on the Large Area Rapid-Injection Compression Molding for Mold Optimum Design)

  • 김태훈;김주연;김종섭;강정진;김종선;노승환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2009
  • The recent LCD TV market has made efforts to produce thinner, brighter, and clearer products, and experienced the rapid light source replacement from a line source of light CCFL to a point source of light LED. In particular, LGP(Light Guiding Panel) among key parts composing BLU(Back Light Unit) has limits of the injection molding technology as well as the mold design, its processing and manufacturing technology so that it is hard to produce large LGP over 40 inch. To produce large light-guide panels over 40 inch under the injection molding process, a mold 3D model was developed in the design process before manufacturing a mold and structure unification was processed through CAE analysis. As a result, it was possible to construct the mold design process, and it is expected to manufacture the optimized mold by applying the mold design and manufacturing process of large-scale rapid injection-compression molding that will be produced in the future.

  • PDF

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.

고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구 (A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology)

  • 정의철;김용대;이정원;이성희
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

퍼지 논리 알고리즘에 의한 사출제품의 미성형 해결 (Trouble Shooting of Short Shot in Injection Molding By Using Fuzzy Logic Algorithm)

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be done by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient Quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

  • PDF

Fuzzy Logic-Based Moldability-Conforming System in Injection Molding

  • Kang, Seong-Nam;Huh, Yong-Jeong;Huh, Yong-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.49-52
    • /
    • 2002
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be dune by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.