• 제목/요약/키워드: Injection Molding Process

검색결과 903건 처리시간 0.03초

열경화성 에폭시를 이용한 가스 절연 개폐기용 절연 스페이서의 사출 성형 최적화 시뮬레이션 (Simulation for Injection Molding of Insulation Spacers for Gas-Insulated Switches Using Thermosetting Epoxy Resin)

  • 배재성;이원창;지홍섭;홍병유;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.426-432
    • /
    • 2021
  • Injection molding is used in many industrial fields such as home appliances, vehicle parts, and electronic device parts because various resins can be molded, leading to mass production of complex shapes. Generally, the empirical prediction method is used to set the initial processing conditions of injection molding. However, this approach requires a lot of cost and its presented solution is not accurate. In this paper, injection molding was simulated through the MoldflowTM in order to manufacture the spacer for gas insulated switch. Through the simulation, the flow of the resin with respect to the diameter of the inlet was analyzed. It was found that the process was possible at a higher resin temperature as the diameter of the inlet increased. In addition, through thermal analysis during injection of the resin, it was confirmed that a stagnation phenomenon occurred at the insert portion during injection molding, and the temperature of the resin was higher than that of the mold. As in this paper, if the spacer is manufactured by optimizing the injection hole and the temperature of the injection process based on simulation, it is expected that the spacer can be manufactured with high productivity.

인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구 (A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN))

  • 양동철;이준한;윤경환;김종선
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.

Study molded part quality of plastic injection process by melt viscosity evaluation

  • Lin, Chung-Chih;Wu, Chieh-Liang
    • Advances in materials Research
    • /
    • 제3권2호
    • /
    • pp.91-103
    • /
    • 2014
  • A study that demonstrates how to investigate the molded part quality and the consistency of injection process based on the rheological concept is proposed. It is important for plastic material whose melt viscosity is variable with respect to the processing condition. The formulations to couple the melt viscosity with injection pressure and fill time are derived first. Taking calculations of the measured pressure and the time by using these formulations, the melt viscosity in injection process can be determined on machine. As the relation between the injection speed and the melt viscosity is constructed, the influences of the setting parameter of injection machine on the molded part quality can be investigated through evaluating the state of the melt viscosity. In addition, a pressure sensor bushing (PSB) designed with a quick installation feature is also provided and validated. The results show that a higher injection speed improves the tensile strength of the molded part but also the consistency of the molded part quality. This work provides an alternative to evaluate the molding quality scientifically.

휴대폰 키패드의 최적 사출성형 공정 설계 (Optimization of injection molding process for plastic keypad on mobile phone)

  • 박은서;신상은;한성렬
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.34-38
    • /
    • 2017
  • Deformation frequently occurring in injection molded products is a phenomenon displayed due to uneven shrinkage distribution and orientation of the whole molded product. Shrinkage deformation is a very serious problem because it causes deformation of the molded article and shortens the performance of the product. In this paper, we are focusing on the warpage of keypad in mobile phone. In other words, we focused on minimizing keypad deformation. In the study, the Taguchi method was applied to find the injection molding conditions that minimize the deformation of the keypad. In the case of this keypad, the main factors influencing the shrinkage deformation were predicted as the melting temperature, coolant temperature and cooling time. In addition, the optimum molding conditions were obtained and the shrinkage strain was minimized. Experiments for the Taguchi method and verification of optimal molding conditions were performed using an injection molding analysis program.

자동차 리어램프 반사판의 사출공정에 따른 변형 패턴 분석 (Analyses on Deformation Patterns Depending on the Injection Process for Rear Lamp Reflectors of Automotive)

  • 최현진;박철우;최성대
    • 한국기계가공학회지
    • /
    • 제9권4호
    • /
    • pp.32-37
    • /
    • 2010
  • One of the most common engineering processes using plastics is the injection molding. In addition, plastics are utilized over the entire areas in our life including cars and home appliances among others for their characteristics with no deterioration even after a long time, as well as for their light weights in addition to their good durability. This paper aimed to minimize defects through prior analyses on the weld line, air traps, filling time, molding temperature and deformation patterns among others while carrying out interpretations on the cooling, filling and deformation in the injection process using the moldflow for rear lamp reflectors among components for a car in making parts through the coating process after injection.

Automated Molding Design Methodology to Optimize Multiple defects in Injection Molded Parts

  • Park, Jong-Cheon;Kim, Byung H.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.133-145
    • /
    • 2000
  • Plastic molding designers are frequently faced with optimizing multiple defects in injection molded parts. these defects are usually in conflict with each other, and thus a tradeoff needs to be made reach a final compromised solution. In this study, an automated injection molding design methodology has been developed to optimize multiple defects of injection molded parts. Two features of the proposed methodology are as follows: one is to apply the utility theory to transform the original multiple objective optimization problem into single objective optimization problem with utility as objective function, the other is an implementation of a direct search-based injection molding optimization procedure with automated consideration of process variation. The modified complex method is used as a general optimization tool in this research. The developed methodology was applied to an actual molding design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production, this study will be of immense value to industry in reducing the product development time and enhancing the product quality.

  • PDF

두 특성의 가치함수를 이용한 사출성형의 최적 설계 (Optimization of Injection Molding Design Using Two-Characteristic Value Function Methodology)

  • 박종천;김경모
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.36-43
    • /
    • 2015
  • Optimizing multiple design characteristics which are usually in conflict with each other in the injection molding process is frequently becoming a critical problem for designers who work in this area. The purpose of this work is to develop an automated design methodology for optimizing two such design characteristics found in injection-molded parts. A value function based on decision-making theory is used as a means of evaluating the performance of a two-characteristic design alternative. Also, a design space reduction algorithm based on Taguchi's orthogonal arrays is utilized to discover an optimal design alternative. Verification of the developed design methodology is carried out for an actual model with two design characteristics, the weld line and the gate location, to be optimized in computer simulation experiments.

사출성형공정에 의한 엔지니어링 플라스틱 기어 개발 (Development of Engineering Plastic Gear Based on Injection Molding Process)

  • 민병헌
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.71-78
    • /
    • 1999
  • The application range of injection molded parts is expanding by the development of engineering plastics with good mechanical properties. Plastic gears are specially used as automotive parts due to an excellent performance in the characteristics of a strength vs. weight, and the study of injection molding process of plastic gear using Nylon66 is performed in this study. Filling, packing and cooling analyses were done by using the simulation software like Moldflow, and a mold was designed by following the simulation results. Pin-point gates with three points were taken to satisfy the design guides like a full-shot, and lower clamping force and uniform shrinkage. Characteristics of shrinkage of molded gear and temperature difference between cavity and core sides of a mold were shown.

  • PDF

Innovations in Micro Metal Injection Molding Process by Lost Form Technology

  • Nishiyabu, Kazuaki;Kanoko, Yasuhiro;Tanaka, Shigeo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.43-44
    • /
    • 2006
  • The production method of micro sacrificial plastic mold insert metal injection molding, namely ${\mu}-SPiMIM$ process has been proposed to solve specific problems involving the miniaturization of MIM. Two types of sacrificial plastic molds (SP-mold) with fine structures were used: 1) PMMA resist, 2) PMMA mold injected into Ni-electroform, which is a typical LIGA (${\underline{L}}ithographie-{\underline{G}}alvanoformung-{\underline{A}}bformung$) process. Stainless steel 316L feedstock was injection-molded into the SP-molds with multi-pillar structures. This study focused on the effects of metal particle size and processing conditions on the shrinkage, transcription and surface roughness of sintered parts.

  • PDF

DC 모터 케이스 제조를 위한 사출성형공정 분석 (An analysis of Injection Molding Process for the Manufacturing of DC Motor Case)

  • 민병현;김병곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.812-815
    • /
    • 2000
  • Injection molding process was taken to manufacture DC motor case that surrounds DC motor used as automobile parts. Up to now, DC motor case has been made by the deep drawing process or bending process of metal materials. Simulations of filling, packing and cooling processes were done by CAE tool like Moldflow software. Optimal delivery system was decided from the analysis of flow balance, and packing and cooling analyses were performed by using the design of experiment to minimize the volumetric shrinkage of molded part and the temperature difference between mold and part.

  • PDF