• Title/Summary/Keyword: Injection Molding Condition

Search Result 174, Processing Time 0.022 seconds

Development of Mold for Coupling Parts for Drum Washing Machine (드럼세탁기용 커플링 부품 다이캐스팅 금형개발)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.482-489
    • /
    • 2020
  • This study conducted a prototype development and evaluation by performing die-casting mold design, mold manufacturing, and injection condition optimization based on flow and solidification analysis to meet the needs of the coupling parts produced by die casting. Through flow analysis, the injection conditions suitable for 100% filling in the cavity were found to be a molten metal temperature of 670 ℃, injection speed of 1.164 m/s, and filling pressure of 6.324~18.77 MPa. In addition, solidification close to 100 % occurred in all four cavities when the solidification rate was 69.47 %. A defect inspection on the surface and inside the product revealed defects, such as poor molding and pores. In addition, the dimensions of the injected product were within the target tolerance and showed good results. Through the feedback of the results of flow and solidification analysis, it was possible to optimize the mold design, and the injection optimization conditions were confirmed to be a total cycle time of approximately 6.5 seconds. Good quality carrier parts with an average surface hardness of approximately 45 mm from the gate measured at 97.48(Hv) could be produced.

Densification Behavior and Magnetic Properties of Fe-2%Ni Sintered Compact Fabricated by Metal Injection Molding (사출성형법에 의해 제작된 Fe-2%Ni연자성 소결체의 소결 및 자기적 특성)

  • Lim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.278-283
    • /
    • 2019
  • 3 kinds of fine powder, Fe-2%Ni alloy powder(N Ltd.) and Fe+2%Ni mixed powder(B Ltd. and S Ltd.), were fabricated into sintered compacts of bending strength specimens and ring type specimens by metal injection molding, debinding and controlling sintering conditions (reduction and sintering atmospheres, sintering temperature, sintering time and cooling rates). Density and magnetic properties of the sintered compacts were evaluated with the following conclusions. (1) When each compact was hold at 1123K for 3.6ks in H2 and sintered at 1623K for 14.4ks in Ar, the density of N, B and S Ltd.'s sintered compacts were measured as 96, 99 and 99%, and oxygen/carbon contents were measured as 0.0041%O/0.0006%C, 0.0027%O/0.0022%C, and 0.160%O/0.0026%C, respectively. (2) Magnetic characteristics of B Ltd. compact in Ar with the best results showed $B_{25}=14.3KG$, $B_r=7.75KG$, and $H_c=2.1Oe$, but not enough as those made by melting process. (3) Magnetic properties of B Ltd. compact which were sintered at 1673K for 14.4ks in Ar gas, and cooled at $0.83Ks^{-1}$ to 1123K and then cooled at $0.083Ks^{-1}$ down to room temperature were measured as $B_{25}=14.8KG$, $B_r=8.3KG$, and $H_c=1.3Oe$, almost similar to those made by melting process. Objected soft magnetic materials properties were obtained through sintering process by controlling sintering conditions (reduction condition, sintering atmosphere, sintering temperature and sintering time) and cooling rates.

Mixing Behavior and Microstructural Development During Fabrication of Fe Micro-nano-powder Feedstock for Micro-PIM (마이크로 PIM용 Fe 마이크로-나노 복합분말 피드스톡 제조시 혼합거동과 미세구조 변화)

  • You, Woo-Kyung;Lee, Jai-Sung;Ko, Se-Hyun;Lee, Won-Sik
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.630-638
    • /
    • 2010
  • The present investigation has been performed on the mixing behavior and microstructural development during fabrication of Fe micro-nano powder feedstock for a micro-powder injection molding process. The mixing experiment using a screw type blender system was conducted to measure the variations of torque and temperature during mixing of Fe powder-binder feedstock with progressive powder loading for various nano-powder compositions up to 25%. It was found that the torque and the temperature required in the mixing of feedstock increased proportionally with increasing cumulative powder loading. Such an increment was larger in the feedstock containing higher content of nano-powder at the same powder loading condition. However, the maximum value was obtained at the nano-powder composition of not 25% but 10%. It was owing to the 'roller bearing effect' of agglomerate type nano-powder acting as lubricant during mixing, consequently leading to the rearrangement of micro-nano powder in the feedstock. It is concluded that the improvement of packing density by rearrangement of nano-powders into interstices of micro-powders is responsible for the maximum powder loading of about 71 vol.% in the nano-powder composition of 25%.

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.