• 제목/요약/키워드: Injection Molding

검색결과 1,563건 처리시간 0.03초

가스사출성형을 이용한 TV MASK FRONT의 무도장 제품에 관한 연구 (A Study on Paintless Molded Parts in TV Mask Front Using Gas-Assisted Injection Molding)

  • 조재성
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.691-700
    • /
    • 2002
  • Injection molded plastic parts have many surface detects: weld line, sink mark, flow mark, gloss, shading, scratching, and so on. Because these surface faults have not been accepted esthetically, plastic parts are Produced through painting or texturing. The purpose of this paper is to develop a paintless molded part of TV Mask Front by flow control method and gas-assisted injection molding. In order to minimize defects from injection molding, this study was carried out using computer aided injection mold filling simulations using MF/FLOW and MF/GAS. Based on these numerical results, we developed FR(Flame Retardant) HIPS and established guidelines of part design, mold design, and Processing conditions. We have achieved of cost sayings, improvement of productivity, and utilization of recycling by eliminating surface defects and painting process.

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

대형 후육 LH형 탄성구조 프레임의 사출성형 최적화에 관한 연구 (A study on optimization of injection molding of large thick LH type elastic frame)

  • 이성희
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.62-69
    • /
    • 2022
  • In the present study, the injection molding optimization of a large thick LH type elastic frames for the reduction of warpage was performed. Two kinds of fine and coarse finite element models were prepared to investigate the efficiency of analysis time and quality on simulation results. In order to derive injection molding conditions that can minimize distortion of parts, it was investigated that the effects of mold temperature, resin temperature, injection time, hold pressure switching time, holding pressure and the hold time on deformation characteristics using the design of experiments. The main influential factors on the warpage were found from the optimization simulation and the geometry data of the warpage result was converted into an initial model for injection simulation. It was shown that a coarse model with good mesh quality could be adapted for mold design since the total analysis time using the proposed model was reduced to 1/10. The suggested inversed warpage model produced the best minimized result of warpage.

사출성형 공정 중 물결 무늬에 대한 유한요소 해석 (Finite Element Analysis for Wave-like Flow Marks in Injection Molding)

  • S. Y Kang;Lee, W. I.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.474-480
    • /
    • 2003
  • The wavelike flow mark phenomenon is one of the surface defects that can arise during the injection stage of the injection molding process. We have performed a numerical analysis using a finite element method for the injection molding to verify the validity of “Go-over” hypothesis. Also, we have compared the results of numerical analysis with available experimental data. Numerical analysis results of the flow marks are qualitatively in good agreement with experimental data of reference, but are quantitatively deviated from experimental data in a consistent manner. A parametric study has been performed to examine the correlative effects of various injection molding processing parameters and material properties on the flow mark size.

  • PDF

고세장비 미세형상 사출성형시 금형온도의 영향 고찰 (Effect of Mold Temperature on Injection Molding of Micro-Features with High Aspect Ratio)

  • 박정민;도범석;엄혜주;박근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1124-1128
    • /
    • 2008
  • Thin-wall injection molding is associated with many advantages, including increased portability, the conserving of materials, and the reduction of the molding cycle times. In the application of the thin-wall molding, a considerable reduction of the effective flow thickness results in filling difficulty. High-frequency induction is an efficient way to overcome this filling difficulty by means of heating the mold surface by electromagnetic induction. The present study applies the induction heating to the injection molding of thinwalled micro structures with high aspect ratio. The feasibility of the proposed heating method is investigated through a numerical analysis. The estimated filling characteristics of the micro-features are investigated with variations of mold temperature and part thickness, of which results are also compared with experimental measurements.

  • PDF

고점도 유동장이 사출-압축 성형에 미치는 영향 (Numerical Study on The Injection-Compression Molding Characteristic of High Viscosity Plastic Fluids)

  • 박균명;김청균
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.345-350
    • /
    • 2002
  • Recently, as the development of manufacturing technique on SMC(sheet molding compound), various numerical and experimental approaches to injection and compression molding have been investigated. Injection and compression molding, however, has so various cases with complicated boundary condition that it is difficult to analyze mold characteristics precisely. In addition, since a slight change in process variables can significantly change the resulting mold thickness, a proper design is important to compression molding process. Therefore, in this study, the effects of various parameters on compression molding process have been investigated using FEM(finite element method) to formulate the melt front advancement during the mold filling process. To verify the results of present analysis, they are compared with those of reference. The results show a strong effect of initial charge volume, injection time and pressure as a result of variations in the rectangular charge shape.

내압력.온도센서를 갖는 표준 인장시편용 사출금형 (Injection Mold with Cavity Pressure/Temperature Sensors for Standard Tensile Test Specimen)

  • 이도명;한병기;이성희
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.84-90
    • /
    • 2007
  • In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed fur tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

휴대폰 키패드의 최적 사출성형 공정 설계 (Optimization of injection molding process for plastic keypad on mobile phone)

  • 박은서;신상은;한성렬
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.34-38
    • /
    • 2017
  • Deformation frequently occurring in injection molded products is a phenomenon displayed due to uneven shrinkage distribution and orientation of the whole molded product. Shrinkage deformation is a very serious problem because it causes deformation of the molded article and shortens the performance of the product. In this paper, we are focusing on the warpage of keypad in mobile phone. In other words, we focused on minimizing keypad deformation. In the study, the Taguchi method was applied to find the injection molding conditions that minimize the deformation of the keypad. In the case of this keypad, the main factors influencing the shrinkage deformation were predicted as the melting temperature, coolant temperature and cooling time. In addition, the optimum molding conditions were obtained and the shrinkage strain was minimized. Experiments for the Taguchi method and verification of optimal molding conditions were performed using an injection molding analysis program.

빠른 냉각과 재료절감을 위한 새로운 가스성형 프로세스 개발 (Development of New GAIM Process for Faster Cooling and Material Reduction)

  • 한성렬;박태원;곽진관;김철주;하만영;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.852-855
    • /
    • 2003
  • Gas-Assisted Injection Molding(GAIM) process, that can be used to provide a hollow shape in a molding, is a variant of the conventional injection molding process. GAIM has many advantages such as reduction of material, sink mark. warpage. and lower injection pressure. Thus, GAIM has been widely applied in the industry to make moldings with a hollow channel such as handles, TV frames and so on. On the other hand, GAIM has some disadvantages such as slow cooling time and flow marks. In the disadvantages, hot gas core causes slow cooling of a molding and the overflow. which is to prevent flow mark. is waste of materials. To solve these problems, we developed a new GAIM system that we called RGIM(Reverse Gas Injection Molding). The RGIM has two special units; one is the overflow buffer, which is used for reduction of a material, and the other tile air unit, which is used for faster cooling of a molding. We conducted an experiment and simulation to verify the efficiency of the RGIM system. Through experiments and simulation, we confirmed the effectively operating of the RGIM system and extracted the optimum process conditions.

  • PDF

플라스틱 랙기어의 사출성형 해석에 관한 연구 (A Study on Injection Molding Analysis of a Plastic Rack Gear)

  • 김형국
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.50-55
    • /
    • 2020
  • This study investigates the injection molding of a plastic rack gear and focuses on deflections in the part. The causes of deflections were found and resolved through a trade-off study by injection molding analysis. Based on a warpage analysis, the fiber orientation was found to be a dominant factor in the occurrence of deflections. Changes in the part design and various injection conditions were analyzed for their effects in reducing deflections. Based on the trade-off study, a new part bottom design, injection time, and melt temperature were recommended. A trial injection was done for the new plastic rack gear, and measurements showed that its flatness surpassed that of the original part and met the specified requirement. The short injection time, low melt temperature, and symmetric similar configuration of the part contributed to the reduction in deflections. Therefore, optimized gate design and injection conditions as well as a new part design were validated through injection molding analysis in this study.