• Title/Summary/Keyword: Injection Material

Search Result 1,137, Processing Time 0.028 seconds

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

A Fundamental Study on The Expression of Initial Strength of Injection Materials for Steel Pipe Multi-Stage Method using Circulating Resources (순환자원을 활용한 강관다단공법용 주입재의 초기강도 발현에 대한 기초연구)

  • Sang-Huwon Song
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.557-562
    • /
    • 2023
  • This study reviewed the use of soil injection materials using circulating resources as injection materials for the steel pipe multi-stage construction method. The tests performed were homogel time and homogel compressive strength. The steel pipe multi-stage construction method is an auxiliary construction method for tunnels, and the expression of initial strength after construction is an important factor. The better the strength development in the initial stage, the more it can be used as an injection material suitable for the multi-stage steel pipe construction method. As a result of laboratory test, it was found that the homogel time of the injection material using circulating resources required more time than the mixing ratio using cement as the injection material. In addition, it was found that the initial strength curing time satisfying 2MPa was required for more than 24 hours. Therefore, it was confirmed that the injection material using recycled resources required a longer initial curing time than cement of the same mixing ratio.

Enhancement of Hole Injection in Organic Light Emitting Device by using Ozone Treated Ag Nanodots Dispersed on ITO Anode (나노 사이즈의 Ag dot을 성막한 ITO 애노드의 오존처리에 의한 유기발광소자의 홀 주입 특성 향상)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Li, Min-Su;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1037-1043
    • /
    • 2006
  • We report the enhancement of hole injection using ozone-treated Ag nanodots dispersed on indium tin oxide anode in $Ir(ppy)_3-doped$ phosphorescent OLED. Phosphorescent OLED fabricated on Ag nanodots dispersed ITO anode showed a lower turn on voltage and higher luminescence than those of OLEDS prepared commercial ITO anode. Synchrotron x-ray scattering examination results showed that the Ag nanodots dispersed on ITO anode is amorphous structure due to low deposition temperature. It was thought that decrease of the energy barrier height as Ag nanodots changed to $AgO_x$ nanodots by surface treatment using ozone for 10 min led to enhancement of hole injection in phosphorescent OLED. Futhermore, efficient hole injection can be explained by increase of contact region between anode material and organic material through introduction of $Ag_2O$ nanodots.

A study of warpage caused by glass fiber orientation in Injection Molding to Upper Frame of Magnetic Contactor in 85 AF (Magnetic Contactor Upper Frame 사출성형시 유리섬유 배향에 따른 뒤틀림 변형에 관한 연구)

  • Park, Jin-Young;Cho, Hae-Yong;Kim, Kil-Su;Hwang, Han-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.766-771
    • /
    • 2000
  • As using of insulating material of plastic to industrial electric field, thermoset has been gradually substituted for thermoplastic. But changing the material with crystalline has some problem, which is strength or warpage, Especially getting a strength to endure inner pressure is necessary when arc is occurred. So we use the material that is composed of glass fiber to compensate strength. By the way as the reinforced glass-fiber material is used in injection molding, unstableness of dimension is appeared frequently and it is difficult to know warpage pattern. So this paper will be contributed to know warpage pattern of mold product that is upper frame of magnetic contactor caused by glass-fiber orientation with fixed gate-system, when glass-fiber reinforced material with classification of poly-amide is used in injection molding.

  • PDF

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Improved Electron Injection on Organic Light-emitting Diodes with an Organic Electron Injection Layer

  • Kim, Jun-Ho;Suh, Chung-Ha;Kwak, Mi-Young;Kim, Bong-Ok;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.221-224
    • /
    • 2005
  • To overcome of poor electron injection in organic light-emitting diodes (OLEDs) with Al cathode, a thin layer of inorganic insulating materials, like as LiF, is inserted between an Al cathode and an organic electron transport layer. Though the device, mentioned above, improves both turn on voltage and luminescent properties, it has some problems like as thickness restriction, less than 2 nm, and difficulty of deposition control. On the other hand, Li organic complex, Liq, is less thickness restrictive and easy to deposit and it also enhances the performance of devices. This paper reports the improved electron injection on OLEDs with another I A group metal complex, Potassium quinolate (Kq), as an electron injection material. OLEDs with organic complexes showed improved turn-on voltage and luminous efficiency which are remarkably improved compared to OLEDs with Al cathode. Especially, OLEDs with Kq have longer life time than OLEDs with Liq.

Development of New GAIM Process for Faster Cooling and Material Reduction (빠른 냉각과 재료절감을 위한 새로운 가스성형 프로세스 개발)

  • 한성렬;박태원;곽진관;김철주;하만영;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.852-855
    • /
    • 2003
  • Gas-Assisted Injection Molding(GAIM) process, that can be used to provide a hollow shape in a molding, is a variant of the conventional injection molding process. GAIM has many advantages such as reduction of material, sink mark. warpage. and lower injection pressure. Thus, GAIM has been widely applied in the industry to make moldings with a hollow channel such as handles, TV frames and so on. On the other hand, GAIM has some disadvantages such as slow cooling time and flow marks. In the disadvantages, hot gas core causes slow cooling of a molding and the overflow. which is to prevent flow mark. is waste of materials. To solve these problems, we developed a new GAIM system that we called RGIM(Reverse Gas Injection Molding). The RGIM has two special units; one is the overflow buffer, which is used for reduction of a material, and the other tile air unit, which is used for faster cooling of a molding. We conducted an experiment and simulation to verify the efficiency of the RGIM system. Through experiments and simulation, we confirmed the effectively operating of the RGIM system and extracted the optimum process conditions.

  • PDF

An Experimental Study on Rheological Characteristics of Metal Injection Molding by Feedstock Material (Feedstock 종류에 따른 금속분말사출성형 유동특성 분석을 위한 실험적 연구)

  • Jung, W.C.;Heo, Y.M.;Shin, K.H.;Yoon, G.S.;Chang, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.57-61
    • /
    • 2009
  • In recently industry, with the miniaturization and high-precision of machine part, the development of mold manufacturing technology for mass production is accompanied by the development of new industrial field such as IT, NT and BT. The metal injection molding(MIM) process combines the well-known thermoplastic injection and powder metallurgy technologies to manufacture small parts for IT, NT, BT industrial. In this study, the bar type MIM mold with a 800um thickness is made for influence of feedstock material and injection parameter through an experiment.

  • PDF

Evaluation of Injection Property of Crack Repair Method by Right Angle Drill Method with Packer (직각천공방식으로 패커를 설치한 균열보수공법의 보수재 주입특성)

  • 고진수;이성복;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.581-586
    • /
    • 2003
  • The objective of this study is to evaluate the injection performance of crack repair method in concrete structure. To improve the quality of the concrete structure caulking material was injected into the crack of building that were planned to be demolished and injection properties of various repair method were compared and assessed according to type of crack. Results from the test showed that when cracks and injection port were integrated and the injection port wasn't blocked repair material was able to be injected even below around 40㎏/㎠ pressure. Moreover, effective pressure each type of packer showed wide range varying from 200-400㎏/㎠. As for drill method for injection port, core drill method has shown to be more effective compared to the air pump method

  • PDF

A Study on the Prediction of the Final Weight for the Injection Molded Rectangular Plates (사각판 사출성형품의 최종무게 예측에 관한 연구)

  • Lee, Chang-Hoon;Yoon, Kyunghwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.130-137
    • /
    • 1996
  • In the present paper the effect of various process conditions on the final weight of injection molded rectangular plates has been investigated in detail. The main parameters involved in the simulations were melt temperature, mold temperature, injection speed and packing pressure. The dimensions of the plate used were 100mm long, 2mm of width and polystyrene was used as a molding material. The shear viscosity of the polymeric material was treated as a function of shear rate, temperature and pressure through the whole processes including packing and cooling stages. By increasing a packing pressure the final weight of sample increased linearly. Furthermore, as the melt temperature, the mold temperature and the injection speed increased, the final weight of the injection molded plate decreased within the molding window.

  • PDF