• Title/Summary/Keyword: Injection Analysis

Search Result 3,031, Processing Time 0.028 seconds

Analysis of the Physical Quantity Variation in the Cavity and the Quality of the Molded Product According to the Injection Speed in Injection Molding

  • Kwon, Soon Yong;Cho, Jung Hwan;Roh, Hyung Jin;Cho, Sung Hwan;Lee, Yoo Jin;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.317-325
    • /
    • 2017
  • Molding conditions can be described as factors that determine the quality of a product obtained from injection molding. Many studies have been performed on the injection molding pressure, injection temperature, packing pressure and other molding conditions related to part quality. However, the most accessible factor among the adjustable molding conditions during actual injection is the injection speed. In this study, we simulated the variation of the physical quantity according to injection speed and performed experiments to understand the effect of injection speed on the actual product. A CAE analysis program (Moldflow) was used to simulate and analyze the results using PC and PBT for two models. In order to compare these results with the experimental results, an actual injection molding was performed for each injection speed, and the correlation between simulation and injection molding, especially for the shrinkage of the molded article, was discussed.

Finite Element Analysis for Wavelike Flow Marks in Injection Molding

  • Kang, Sung-Yong;Lee, Woo-Il
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.27-32
    • /
    • 2003
  • The wavelike flow mark phenomenon is one of the surface defects that can arise during the injection stage of the injection molding process. We have performed a numerical analysis using a finite element method for the injection molding to verify the validity of 'Go-over' hypothesis. Also, we have compared the results of numerical analysis with available experimental data. Numerical analysis results of the flow marks are qualitatively in good agreement with experimental data of reference, but are quantitatively deviated from experimental data in a consistent manner. A parametric study has been performed to examine the correlative effects of various injection molding processing parameters and material properties on the flow mark size.

  • PDF

Finite Element Analysis for Wave-like Flow Marks in Injection Molding (사출성형 공정 중 물결 무늬에 대한 유한요소 해석)

  • S. Y Kang;Lee, W. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.474-480
    • /
    • 2003
  • The wavelike flow mark phenomenon is one of the surface defects that can arise during the injection stage of the injection molding process. We have performed a numerical analysis using a finite element method for the injection molding to verify the validity of “Go-over” hypothesis. Also, we have compared the results of numerical analysis with available experimental data. Numerical analysis results of the flow marks are qualitatively in good agreement with experimental data of reference, but are quantitatively deviated from experimental data in a consistent manner. A parametric study has been performed to examine the correlative effects of various injection molding processing parameters and material properties on the flow mark size.

  • PDF

Numerical analysis of injection molding of aspheric lenses for a mobile phone camera module (휴대폰 카메라용 비구면렌즈 사출성형의 수치해석)

  • Park, Keun;Eom, Hye-Ju
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.143-148
    • /
    • 2008
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF

Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine (사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development (이색 사출성형기 개발을 위한 유압시스템의 특성 검토)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.

CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold (치과용 스케일러 금형의 분말사출성형 CAE 해석설계)

  • Ko Y. B.;Park H. P.;Chung S. T.;Rhee B. O.;Hwang C. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

Development of Array-Lens for Multi-Color Chip-LED (Multi-Color Chip-LED용 어레이 렌즈 개발에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Jang, Kyeung-Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.50-55
    • /
    • 2007
  • The purpose of this research is to enhance the luminance of the LED and to improve the implementation of color by mounting an array lens on the LED without special technology in process. The workmanship of key components considering the economical efficiency and the injection molding technology for high quality of the product are essential to achieve it. In this paper, the mold was computer-aided was designed and manufactured by CAM software (NX4) and high speed machining center. the applied final machining conditions were 3,000-5,000mm/min feed speed, 15,000-25,000rpm and ${\Phi}0.3mm$ ball end-mill. And the Flow analysis was performed using the mold flow software(MPI) in order to get uniformity of resin. Injection conditions acquired by the flow analysis and the injection experiment are as follows. The cylinder temperature is $220-260^{\circ}C$, the mold temperature is $70-80^{\circ}C$, the injection time is about 1.2sec, the injection pressure and velocity is each 7.8-14.7Mpa, and the injection velocity is 0.8-1.2m/sec.

Metal Injection Molding Analysis for Developing Embroidering Machine Rotary Hooks (자수기용 로터리 훅 개발을 위한 금속분말 사출성형해석)

  • Kim, Sang-Yoon;Park, Bo-Gyu;Jung, Jae-Ok;Cho, Kyu-Sang;Chung, Ilsup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.160-168
    • /
    • 2018
  • Among the components of rotary hooks, a core component of an embroidery sewing system, a study was conducted to apply metal injection molding to the manufacture of a hook body and a housing that was very difficult to mechanical working. The correlation of feedstock, a mixture of binder and SCM 415 metal powder, and properties of the pressure-volume-temperature interrelationship, viscosity, specific heat, and thermal conductivity were measured. Injection molds for the hook body and the housing were developed through injection molding analysis using these properties and conducted injection tests. Optimal injection gate position and number, injection pressure, and injection time were obtained through a comparison of analysis results with the experiment results.

Flow Simulation and Deformation Analysis for Injection Molded Plastic Lenses using Solid Elements (입체요소를 사용한 플라스틱 렌즈의 사출성형 및 후변형 해석)

  • Park, Geun;Han, Chul-Yup
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.784-787
    • /
    • 2003
  • The present work covers three-dimensional flow simulation and deformation analysis of injection molded plastic lenses using solid elements. A numerical scheme to evaluate part deformation has been proposed from the results of injection molding analysis. Proposed scheme has been applied to the injection molding processes of optical plastic lenses: a spherical lens and an aspheric lens for a photo pick-up device. Through the simulation processes. residual stress is estimated and the final deformed patters are obtained for both products. The reliability of the proposed approach has also been verified in comparison with the results of real experiments.

  • PDF