• Title/Summary/Keyword: Inje fault

Search Result 10, Processing Time 0.024 seconds

Reactivated Timings of Inje Fault since the Mesozoic Era (인제단층의 중생대 이 후 재활동 연대)

  • Khulganakhuu, Chuluunbaatar;Song, Yungoo;Chung, Donghoon;Park, Changyun;Choi, Sung-Ja;Kang, Il-Mo;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Recently developed illite-age-analysis(IAA) approach was applied to determine the fault-reactivated events for the Inje fault that cut through Precambrian biotite granitic gneiss with NNE-SSW trend in the middle of Korean peninsula. Three distinct fault-reactivated events of shallow crustal regime were recognized using the combined approach of optimized illite-polytype quantification and K-Ar age-dating of clay fractions separated from 4 fault clay samples: $87.0{\pm}0.12Ma$, $65.5{\pm}0.05$ and $66.6{\pm}1.38Ma$, $45.6{\pm}0.15Ma$, respectively. As well, $2M_1$ illite ages of 193~196 Ma and $254.3{\pm}6.96Ma$ were discernible, which may be related to the fault-activated time in the relatively deep crust. The study results suggest that the Inje fault would be firstly formed at $254.3^{\circ}$ ${\ae}6.96Ma$ and sporadically reactivated in shallow regime since about 87 Ma. These reactivation events in shallow regime might be due to the Bulguksa orogeny that would be strongly influenced in Korean peninsula at that time.

Displacement of Dongducheon and Wangsukcheon Fault Observed by Gravity Field Interpretation (중력장 해석으로 관측된 동두천 및 왕숙천 단층의 변위)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • To estimate the tectonic displacement of the Chugaryeong Fault System (CFS), gravity surveys were conducted along the Dongducheon fault (DF) and the Wangsukcheon fault (WF). A total of 1,100 stations for the DF and WF regions have been added to the current gravity database. The results of the gravity interpretation indicate that (1) the dextral displacement of the DF is about 3,000 m, similar to the tectonic displacement (2,900-3,100 m) shown in the geological map. (2) The dextral displacement of the WF is about 3,200 m. (3) Taken together, the tectonic displacement of the CFS is estimated to be about 3,000 m on average. To investigate more accurate tectonic displacement of the CFS, further gravity surveys is planned for the Pocheon fault, Gyeonggang fault, and Inje fault.

A Study on Fault Detection and Diagnosis of Gear Damages - A Comparison between Wavelet Transform Analysis and Kullback Discrimination Information - (기어의 이상검지 및 진단에 관한 연구 -Wavelet Transform해석과 KDI의 비교-)

  • Kim, Tae-Gu;Kim, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • This paper presents the approach involving fault detection and diagnosis of gears using pattern recognition and Wavelet transform. It describes result of the comparison between KDI (Kullback Discrimination Information) with the nearest neighbor classification rule as one of pattern recognition methods and Wavelet transform to know a way to detect and diagnosis of gear damages experimentally. To model the damages 1) Normal (no defect), 2) one tooth is worn out, 3) All teeth faces are worn out 4) One tooth is broken. The vibration sensor was attached on the bearing housing. This produced the total time history data that is 20 pieces of each condition. We chose the standard data and measure distance between standard and tested data. In Wavelet transform analysis method, the time series data of magnitude in specified frequency (rotary and mesh frequency) were earned. As a result, the monitoring system using Wavelet transform method and KDI with nearest neighbor classification rule successfully detected and classified the damages from the experimental data.

  • PDF

LSP Congestion Control methods in ATM based MPLS on BcN

  • Kim Chul soo;Park Na jung;Ahn Gwi im;Lee Jung tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.241-249
    • /
    • 2005
  • ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QOS commitment capabilities, Traffic engineering and smooth migration for BcN in Korea. At this time, due to the comprehensive nature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffic[1,2,3,4]. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To-Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we have introduced a HTR LSP detection method using network signaling information in an ATM layer. MPLS related studies can cover LSP failures in a physical layer fault, it can not impact network congestion status. Here we will present the research results for introducing HTR LSP detection methods and control mechanisms and this mechanism can be implementing as SOC for high speed processing a packet header. We concluded that it showed faster congestion avoidance abilities with a more reduced system load and maximized the efficiency of network resources by restricting ineffective machine attempts.

Earthquake-induced Liquefaction Areas and Safety Assessment of Facilities (지진으로 인한 액상화 지역 및 시설물 안정성 평가)

  • Jeon, Sang-Soo;Heo, DaeYang;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.133-143
    • /
    • 2018
  • Liquefaction is one of secondary damages after earthquake and has been rarely reported until earthquake except Mw = 5.4 15 November 2017 Pohang earthquake in Korea. In recent years, Mw = 5.8 12 September 2016 Gyeongju earthquake and Mw = 5.4 15 November 2017 Pohang earthquake, which induced liquefaction, occurred in fault zone of Yangsan City located at south-eastern part of Korea. This explains that Korea is not safe against liquefaction induced by earthquake. In this study, the distance between the centroid of administrative district and the epicenter located at Yangsan fault, peak ground velocity (PGA) induced by both Mw = 5.0 and 6.5, and liquefaction potential index (LPI), which is calculated by using groundwater level and standard penetration test results of 274 in the area of Gimhae city located in adjacent to Nakdong river and across Yangsan fault, have been estimated and then kriging method using geographical information systems has been used to evaluate liquefaction effects on the damage of facilities. This study presents that Mw = 5.0 earthquake induces a small and low level of liquefaction resulting in slight damage of facilities but Mw = 6.5 earthquake induces a large and high level of liquefaction resulting in severe damage of facilities.

Design of the Reconfigurable Load Distribution Control Allocator

  • Yang, Inseok;Kang, Myungsoo;Sung, Jaemin;Kim, Chong-Sup;Cho, Inje
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • This paper proposes the load distribution control allocation technique. The proposed method is designed by combining a conventional control allocation method with load distribution ability in order to reduce the stress acting on ailerons. By designing the weighting matrix as a function of the load distribution rule, the optimal deflection angles of each surface to satisfy both control goal and load distribution can be achieved. Moreover, rule based fault-tolerant control technique is also proposed. The rules are generated by considering both dominant control surfaces and the ratio of load distribution among surfaces. The performance of the proposed method is evaluated through numerical simulations.

A Study on the Wireless Sensor Network Routing Method and Fault Node Detection for Production Line (생산라인에 적용을 위한 무선 센서 네트워크 라우팅방식 및 고장노드 검출에 대한 연구)

  • Park, Jeong?Hyeon;Seo, Chang-Jun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1104-1108
    • /
    • 2018
  • IIoT applies IoT to industrial sites to monitor factors such as production, manufacturing, and safety, and it is a solution that allows the worker to easily manage the site. An important technology element in this IIoT is a technology that collects information on industrial sites and delivers reliable information to managers using sensors. Therefore, general industrial sites use wired network methods such as Ethernet and RS485 to deliver information. However, there are limitations to the problem of infrastructure costs and to the wide range of line constructions in network deployment. Therefore, in this paper, the network of IEEE 802.15.4 Ad-Hoc wireless sensors is deployed on production lines with machine tools. In addition, we describe the routing method considering machine tool layout and sensor node failure detection algorithm.

Distribution Characteristics of the Incised Meander Cutoff in Gyeonggi and Gangwon Provinces, Central Korea (경기${\cdot}$강원 지역 감입곡류 하천의 곡류절단면 분포 특성)

  • Lee Gwang-Ryul;Yoon Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.6 s.105
    • /
    • pp.845-862
    • /
    • 2004
  • The aim of this study is to investigate distribution characteristics of incised meander cutoff in Gyeonggi and Gangwon Provinces of Central Korea. The density of meander cutoff is highest in the mountain rivers including Naerin and Dongdae flowing on Jeongseon-gun and Inje-gun of Gangwon Province. Most of meander cutoff process has been occurred repeatedly during the Quaternary period, especially concentrated in the period of climatic change between glacial and interglacial stages. In the aspect of the lithology, the density of cutoff is highest in sedimentary rock, but lowest in igneous rock. As for geological structure, its frequency is high at $11{\sim}20km$ westerly away from the Taebaek Mountains, at subsequent channel, lower part of resequent channel, and channels crossing the fault line. The relation between distance from the Taebaek Mountains and altitude is very obvious at the western side of the Taebaek Mountains. The values of altitude, height from riverbed, and stream order are highest at sedimentary rock and lowest at volcanic rock.

The Image Distortion Analysis of Levin-tube tip by Patient position and Incidence Angle when taking Mobile Chest AP Projection (Mobile Chest AP 검사 시 환자자세와 입사각도에 따른 Levin-tube tip의 영상왜곡 분석)

  • Lee, Jinsoo;Park, Hyonghu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.467-471
    • /
    • 2015
  • This study's purpose is improve image quality to keep accurate tube angle in order to recognize distortion degree conditions by patient's position or tube angle and to provide exact clinical informations when taking chest AP projection for patient which have L-tube in stomach. The experimental equipment was ELMO-T6S by SHIMADZU corporation, then we put L-tube which attached 1 mm gap scales ruler on chest phantom surface. The experiment set by 90 kVp, 4 mAs, 120 cm distance. Each phantom position which changed supine, 30degree, 45degree, 60degree on the table exposured direct, ${\pm}5degree$, ${\pm}10degree$, ${\pm}15degree$ to head and feet directions. As a result, L-tube tip's position was changed by patient's position and tube angle. When patient's position is supine, tip's position change was lower than 30degree, 45degree, 60degree. We have to adjust patient's position or tube angle in order to occur image distortion by fault tube angle when confirming correct position L-tube tip through chest x-ray. Also, Radiological technologist try to make accurate evaluation index for satisfied L-tube insertion.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.