• 제목/요약/키워드: Initialization problem

검색결과 79건 처리시간 0.03초

절단된 분포를 이용한 인공신경망에서의 초기값 설정방법 (Initialization by using truncated distributions in artificial neural network)

  • 김민종;조성철;정혜린;이영섭;임창원
    • 응용통계연구
    • /
    • 제32권5호
    • /
    • pp.693-702
    • /
    • 2019
  • 딥러닝은 대용량의 데이터의 분류 및 예측하는 방법으로 각광받고 있다. 데이터의 양이 많아지면서 신경망의 구조는 더 깊어 지고 있다. 이때 초기값이 지나치게 클 경우 층이 깊어 질수록 활성화 함수의 기울기가 매우 작아지는 포화(Saturation)현상이 발생한다. 이러한 포화현상은 가중치의 학습능력을 저하시키는 현상을 발생시키기 때문에 초기값의 중요성이 커지고 있다.이런 포화현상 문제를 해결하기 위해 Glorot과 Bengio (2010)과 He 등 (2015) 층과 층 사이에 데이터가 다양하게 흘러야 효율적인 신경망학습이 가능하고 주장했다. 데이터가 다양하게 흐르기 위해서는 각 층의 출력에 대한 분산과 입력에 대한 분산이 동일해야 한다고 제안했다. Glorot과 Bengio (2010)과 He 등 (2015)는 각 층별 활성화 값의 분산이 같다고 가정해 초기값을 설정하였다. 본 논문에서는 절단된 코쉬 분포와 절단된 정규분포를 활용하여 초기값을 설정하는 방안을 제안한다. 출력에 대한 분산과 입력에 대한 분산의 값을 동일하게 맞춰주고 그 값이 절단된 확률분포의 분산과 같게 적용함으로써 큰 초기값이 나오는 걸 제한하고 0에 가까운 값이 나오도록 분포를 조정하였다. 제안된 방법은 MNIST 데이터와 CIFAR-10 데이터를 DNN과 CNN 모델에 각각 적용하여 실험함으로써 기존의 초기값 설정방법보다 모델의 성능을 좋게 한다는 것을 보였다.

Landmark Initialization for Unscented Kalman Filter Sensor Fusion in Monocular Camera Localization

  • Hartmann, Gabriel;Huang, Fay;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2013
  • The determination of the pose of the imaging camera is a fundamental problem in computer vision. In the monocular case, difficulties in determining the scene scale and the limitation to bearing-only measurements increase the difficulty in estimating camera pose accurately. Many mobile phones now contain inertial measurement devices, which may lend some aid to the task of determining camera pose. In this study, by means of simulation and real-world experimentation, we explore an approach to monocular camera localization that incorporates both observations of the environment and measurements from accelerometers and gyroscopes. The unscented Kalman filter was implemented for this task. Our main contribution is a novel approach to landmark initialization in a Kalman filter; we characterize the tolerance to noise that this approach allows.

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

자체교차방지 다해상도 변형 모델 (Non-self-intersecting Multiresolution Deformable Model)

  • 박주영;김명희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제6권1호
    • /
    • pp.19-27
    • /
    • 2000
  • 본 논문에서는 볼륨 데이터로부터 관심대상 객체의 3차원 경계면을 추출하고 이에 대한 기하학적 모델을 생성하기 위하여 자체교차방지 기능을 가진 다해상도 변형 모델을 제시한다. 변형 모델은 경계면 추출에 우수한 성능을 가진 것으로 알려져 있지만, 기존 변형 모델은 초기화 의존성, 오목한 경계면 추출의 취약성, 모델 요소간 자체교차 발생의 세가지 문제점을 가지고 있다. 제안하는 변형 모델은 다해상도의 볼륨 데이터를 기반으로하여 모델을 저해상도에서 고해상도로 세분화해가면서 객체의 경계면을 추출함으로서 초기화에의 의존성을 극복할 뿐 아니라 빠른 속도로 경계면에 수렴할 수 있다. 또한, 삼각형 메쉬 크기를 볼륨 데이터의 복셀 크기에 맞추어 항상 균일하게 유지함으로써 모델이 내부 힘의 제약없이 오목한 경계면을 성공적으로 추출할 수 있게 하였고, 모델이 변형될 때마다 자체교차방지 힘을 적용하여 모델내 삼각형 메쉬간의 자체교차를 사전에 방지할 수 있도록 하였다. 제안 모델을 컴퓨터 합성 볼륨 데이터 및 뇌 MR 볼륨 영상 데이터에 적용한 결과 오목한 함몰 부위를 가진 구와 뇌피질의 경계면을 자체교차없이 빠른 속도로 추출할 수 있었다.

  • PDF

커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화 (Initialization of Fuzzy C-Means Using Kernel Density Estimation)

  • 허경용;김광백
    • 한국정보통신학회논문지
    • /
    • 제15권8호
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM)는 군집화를 위해 널리 사용되는 알고리듬 중 하나로 다양한 응용 분야에서 성공적으로 사용되어 왔다. 하지만 FCM은 여러 가지 단점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 군집화의 결과가 달라진다. 따라서 초기 원형의 설정은 군집화 결과 향상을 위해 중요하다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 해결하는 방안으로 커널 밀도 추정을 활용하는 방법을 제안한다. 커널 밀도 추정은 비모수적 분포들에도 사용할 수 있어 국부적인 데이터 밀도 추정에 유용하다. 제안한 방법에서는 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 선택할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험 결과를 통해 확인할 수 있다.

멀티 카메라 연동을 위한 군집화 기반의 객체 특징 정합 (Clustering based object feature matching for multi-camera system)

  • 김현수;김경환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.915-916
    • /
    • 2008
  • We propose a clustering based object feature matching for identification of same object in multi-camera system. The method is focused on ease to system initialization and extension. Clustering is used to estimate parameters of Gaussian mixture models of objects. A similarity measure between models are determined by Kullback-Leibler divergence. This method can be applied to occlusion problem in tracking.

  • PDF

Performance Comparison of CEALM and NPSOL

  • Seok, Hong-Young;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.169.4-169
    • /
    • 2001
  • Conventional methods to solve the nonlinear programming problem range from augmented Lagrangian methods to sequential quadratic programming (SQP) methods. NPSOL, which is a SQP code, has been widely used to solve various optimization problems but is still subject to many numerical problems such as convergence to local optima, difficulties in initialization and in handling non-smooth cost functions. Recently, many evolutionary methods have been developed for constrained optimization. Among them, CEALM (Co-Evolutionary Augmented Lagrangian Method) shows excellent performance in the following aspects: global optimization capability, low sensitivity to the initial parameter guessing, and excellent constraint handling capability due to the benefit of the augmented Lagrangian function. This algorithm is ...

  • PDF

A Fuzzy Clustering Method based on Genetic Algorithm

  • Jo, Jung-Bok;Do, Kyeong-Hoon;Linhu Zhao;Mitsuo Gen
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.1025-1028
    • /
    • 2000
  • In this paper, we apply to a genetic algorithm for fuzzy clustering. We propose initialization procedure and genetic operators such as selection, crossover and mutation, which are suitable for solving the problems. To illustrate the effectiveness of the proposed algorithm, we solve the manufacturing cell formation problem and present computational comparisons to generalized Fuzzy c-Means algorithm.

  • PDF

비압축성 2 상유동의 모사를 위한 level set 방법에서의 reinitialization 직접 접근법에 관한 연구 (Study on the direct approach to reinitialization in using level set method for simulating incompressible two-phase flows)

  • 조명환;최형권;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.568-571
    • /
    • 2008
  • The computation of moving interface by the level set method typically requires reinitializations of level set function. An inaccurate estimation of level set function ${\phi}$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, accurate and robust reinitialization process is essential to the free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates directly level set function ${\phi}$ using a normal vector in the interface without solving the re-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1splitting FEM are adopted to discretize advection equation of the level set function and the Navier-Stokes equation, respectively. Advection equation of free surface and re-initialization process are validated with benchmark problems, i.e., a broken dam flow and time-reversed single vortex flow. The simulation results are in good agreement with the existing results.

  • PDF

비압축성 2 상유동의 모사를 위한 Level Set 방법의 Reinitialization 방정식의 해법에 관한 연구 (Study on the Solution of Reinitialization Equation for Level Set Method in the Simulation of Incompressible Two-Phase Flows)

  • 조명환;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.754-760
    • /
    • 2008
  • Computation of moving interface by the level set method typically requires the reinitialization of level set function. An inaccurate estimation of level set function $\phi$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, an accurate and robust reinitialization process is essential to the simulation of free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates level set function directly using a normal vector on the interface without solving there-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1 splitting/SUPG (Streamline Upwind Petrov-Galerkin) FEM are adopted to discretize advection equation of the level set function and the incompressible Navier-Stokes equation, respectively. Advection equation and re-initialization process of free surface capturing are validated with benchmark problems, i.e., a broken dam flow and timereversed single vortex flow. The simulation results are in good agreement with the existing results.