• Title/Summary/Keyword: Initial tension

Search Result 425, Processing Time 0.032 seconds

Influence of Initial Clamping Force of Tension Clamp on Performance of Elastic Rail Fastening System (텐션클램프의 초기 체결력이 탄성레일체결장치의 성능에 미치는 영향)

  • Lee, Dong Wook;Choi, Jung Youl;Baik, Chan Ho;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1243-1251
    • /
    • 2013
  • The purpose of this study is to investigate the influence of initial clamping force of tension clamp on the performance of an elastic rail fastening system used in sharp curve track. In this study, the initial clamping force and the increasing lateral wheel loads were conducted in the analytical and experimental study, i.e., finite element analysis, laboratory and field test. Using the analytical and experimental results, the performance of the tension clamp was investigated. It was found that the stress of tension clamp depends on the initial clamping force. Therefore the initial clamping force appeared to directly affect the compression stress of the tension clamp. It was found that the compression stress of tension clamp was transferred to the tensile stress by applied the lateral wheel load in service sharp curve track. Further, it was concluded that the initial clamping force was applied on the strengthening force for the tension clamp and then the appropriate initial clamping force was important to ensure a stable performance and long term endurance of tension clamp.

Transmission Error Influences by Initial Tension of Timing Chain System (타이밍 체인 시스템의 초기 장력이 전달 오차에 미치는 영향)

  • Park, Yongsik;Jung, Taeksu;Hong, Yunhwa;Kim, Youngjin;Park, Youngkyun;Lee, Jungjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • The timing chain system, which is a typical power transmission technology applied to a vehicle, has been widely used by the automotive industry because it is normally designed to last a car's lifetime. However, the timing chain system may cause some problems due to the shape of the chains and the polygonal behavior on contact between the chain and the sprocket. In addition, noise and vibration caused by transmission error are the most typical problems encountered by major automotive manufacturers and they are considered as the main source of customer complaint. The initial tension of the chain-sprocket system is thought to be the main cause of transmission error, and it is regarded as the source of engine vibration and noise. The initial tension of the chain system should be controlled carefully since a low initial tension can cause twisting, which may lead to a system malfunction, while a high initial tension can reduce the service life due to a worn down contact surface. In this paper, the kinematic analysis model is generated with various initial tensions, which are controlled by changing the shape of the fixed guide with the largest contact surface with chain. The results showed that the transmission error was minimized on a particular range of initial tension, and the tendency showed that the error changed with a higher sensitivity at a lower initial tension.

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

Effect of Initial Tension on Natural Periods for a Suspension Bridge (현수교 초기장력이 고유주기 산정에 미치는 영향)

  • 김호경;이재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.450-454
    • /
    • 2003
  • Natural periods are usually determined by the so-called linearized finite displacement theory even for a suspension bridge. This linearized method, with formulating structural stiffness by taking dead-load tension into consideration, calculates the natural periods of the bridge. As a result, the assumed initial tensions for each cable member may affect the accuracy of calculated natural periods and some other dynamic responses. This paper mainly demonstrates the effect of initially introduced tension accuracy on the evaluation of dynamic characteristics for a suspension bridge.

  • PDF

The Effect of Track Tension on the Tractive Performance of Combine (궤도(軌道)의 장력(張力)이 콤바인의 주행(走行) 성능(性能)에 미치는 영향(影響))

  • Park, G.B.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.237-246
    • /
    • 1992
  • This study was conducted to investigate experimentally the effect of track tension on the tractive performance of rice combine. The experiment was carried out at the two in-door soil bins with soil types of loam and sandy loam. The initial track tension was varied by three different values of 0.71, 1.75 and 3.84kN at three different forward velocity settings of 0.17, 0.32 and 0.45m/s, respectively. The data acquisition system was designed and used for the measurement of pull, driving axle torque and its velocity under the test conditions to calculate the tractive efficiency. Results of the study were summarized as follows : 1) The effect of the initial track tension on the tractive efficiency was found being significantly dependent on soil types but not on forward velocities. Therefore, the benifit of adjusting the initial track tension may be obtained when the types of soils on which combines operate are changed. 2) In loam, tractive efficiency decreased with increase in track tension. However, it increased in sandy loam until it reached to a peak value and then decreased with increase in track tension. 3) The maximum tractive efficiency of the tested combine was obtained with an initial track tension of about 1.75kN on sandy loam, and below that on loam at about 5% slippage without being noticeably influenced by the forward velocity.

  • PDF

A Study on the Dynamic Characteristics of Tension Structures according to Initial Tension Forces and Equilibrium Shape (초기인장력과 평형형상을 고려한 인장구조물의 동적 특성에 대한 연구)

  • Chang, Dong Il;Kim, Hak Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.73-83
    • /
    • 1998
  • Considering dynamic behaviors according to initial tension forces, geometric nonlinearity and the effect of higher eigen modes to participate in dynamic behaviors increase as initial tension forces decrease, and from phase portrait we can realize that period attractors are produced in many area with complexity. If initial tension forxes increase, difference between linear and nonlinear solutions will decrease and the first eigen mode dominate the dynamic behaviors and observing phase portrait, period attractors appear in certain area regularly. These results may offer meaningful informations to nonlinear dynamic analysis using modal reduction methods such as Lanczos modal analysis. And actually nonlinear dynamic analysis needs very large computational efforts. So, if we determine the number of eigen modes to take part in modal analysis corresponding to initial tension forces we will get more accurate data close to exact nonlinear dynamic solutions.

  • PDF

Effect of Initial Track Tension on the Tractive Performance of Tracked Vehicles (궤도의 초기 장력이 궤도 차량의 견인 성능에 미치는 영향)

  • 김채주;김경욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • A computer program was developed to simulate effect of the initial track tension on the tractive performance of tracked vehicles. The performance was evaluated in terms of drawbar pull, motion resistance, tractive coefficient and tractive efficiency. Results of the simulation showed that increase in track tension decreases the sinkage and mean maximum pressure in clay, making the ground pressure distribution more uniform. This tendency became more evident when the number of roadwheels increased. However, such change in MMPs was negligible in firm soils. Motion resistance was also decreased with increase in track tension and the number of roadwheels. Under weak soil conditions, tractive coefficient and efficiency increased generally as the track tension increased for a slip range of 10∼30%. For slippage less than 3∼4%, however, the tractive coefficient decreased with increase in track tension. In general, it was known that increasing track tension improves tractive performance in weak soil conditions. However, high track tension can reduce efficiency due to the increment of internal motion resistance caused by increased track tension.

  • PDF

A Simulation for the Free Vibration of Pipe Systems Considering Initial Tension (초기 인장력을 고려한 파이프계의 자유진동 시뮬레이션)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.105-114
    • /
    • 1998
  • Using finite elements, a simulation is prformed for the pipe systems to investigate free vibrational characteristics, that is natural frequencies, considering the intial tension due to the velocity and the pressure of the inside fluid flow. To confirm the program developed in this study, the results are compared with the results of commercial software ANSYS. When the initial tension is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies took place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies.

  • PDF

Shape Finding and Stress Finding for Pneumatic Membrane Structures by Dynamic Relaxation Method (동적이완법에 의한 공기막구조물의 형태탐색과 응력해석)

  • 문창훈;이경수;배종효;최옥훈;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.268-275
    • /
    • 1999
  • The purpose of this study is to propose the method of determining the initial pneumatic membrane structures surface and stresses and displacements. Tension structure such as pneumatic membrane structures is stabilized by their initial prestress and air pressure. The process to find initial structural overall shape of tension structures produced by initial prestress called shape finding. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress. The result for initial surface of pneumatic membrane element and maximum displacement in large deformation in analysis is compared with well-known nonlinear numerical method such as Newton-raphson method and dynamic relaxation method

  • PDF

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.