• Title/Summary/Keyword: Initial size

Search Result 2,468, Processing Time 0.043 seconds

Properties of Water-based Acrylic Adhesives Depending on Surfactants (계면활성제의 종류에 따른 수성 아크릴 접착제의 물성변화)

  • Park, Jong-Kwon;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.454-459
    • /
    • 2017
  • In this study, aqueous acrylic emulsion adhesives were prepared using various surfactants and their properties were also investigated. Solids content, conversion, particle size distribution and initial adhesion properties of the prepared adhesives were compared with each other. The solid content of the adhesives was evaluated 60% and the conversion rate of the emulsion polymerization was 97% at 2 wt% concentration of synthesized surfactants. The particle size distribution analysis revealed that the size distribution of adhesive particles was 290~470 nm when the synthesized cationic surfactant was added. The initial adhesion and adhesion time were also improved. The maximum adhesive strength was found to be 2.55 kgf when using a single surfactant (POE 23), and superior to that of using other surfactants. It was confirmed that the corrosion inhibition of the adhesive prepared by adding the cationic gemini surfactant was maintained for 48 hours.

Characteristics of Indium Dissolution of Waste LCD Panel Powders Fabricated by High Energy Ball Milling (HEBM) Process with Milling Time (고에너지 밀링으로 제조된 폐디스플레이 패널 분말의 밀링시간에 따른 인듐 용출특성)

  • Kim, Hyo-Seob;Sung, Jun-Je;Lee, Cheol-Hee;Hong, Hyun-Seon;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.378-384
    • /
    • 2011
  • In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 ${\mu}m$ until the first minute, then decreased gradually about 6 ${\mu}m$ with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 ${\mu}m$ consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 ${\mu}m$ with 1 minute of milling.

Reduction in Sample Size Using Topological Information for Monte Carlo Localization

  • Yang, Ju-Ho;Song, Jae-Bok;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.901-905
    • /
    • 2005
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Much research has been done to improve performance of MCL so far. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of the MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated off- line using a thinning method, which is commonly used in image processing, is employed. The topological map is first created from the given grid map for the environment. The robot scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be the same as the one obtained off- line from the given grid map. Random samples are drawn near the off-line topological edge instead of being taken with uniform distribution, since the robot traverses along the edge. In this way, the sample size required for MCL can be drastically reduced, thus leading to reduced initial operation time. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased.

  • PDF

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.

The Droplet Size Distribution of Fan Spray at Different Surrounding Conditions (팬형분무의 주변조건에 따른 입자분포 변화)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.611-619
    • /
    • 2007
  • In this study, the droplet size distribution of a slit injector at different surrounding conditions, such as air flow and fuel temperature, were investigated. Phase Doppler anemometry (PDA) was utilized to investigate the initial droplet size distribution and the effect of fuel temperature and air flow on droplet size distribution. The entrained air motion was also evaluated by the temporal velocity profile of droplets. When the air flow velocity increased, the small droplets were more entrained to the upper and central parts of the spray and this tendency was confirmed by plotting the temporal velocity profile of droplets. This entrainment of small droplets at high airflow velocities caused relatively small mean droplet size at upper and central parts of the spray and the large mean droplet size at downstream and edge of the spray, compared to that of low airflow velocities. The total mean droplet size, obtained by averaging the size of all droplets measured at all test locations, decreased when the high airflow velocities were applied. The increased fuel temperature, with an airflow velocity of 10m/s, caused reduced droplet size at all test locations. However, the decreased value of mean droplet size at high fuel temperatures was relatively higher at upper parts of the spray, compared to downstream, as a result of enhanced entrainment of small droplets to upper parts of the spray.

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

Measurement of the Early-Age Coefficient of Thermal Expansion and Drying Shrinkage of Concrete Pavement (콘크리트포장의 초기 열팽창계수 및 건조수축 측정 연구)

  • Yoon, Young-Mi;Suh, Young-Chan;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2008
  • Quality control of the concrete pavement in the early stage of curing is very important because it has a conclusive effect on its life span. Therefore, examining and analyzing the initial behavior of concrete pavement must precede an alternative to control its initial behavior. There are largely two influential factors for the initial behavior of concrete pavement. One is the drying shrinkage, and the other is the heat generated by hydration and thermal change inside the pavement depending on the change in the atmospheric temperature. Thus, the coefficient of thermal expansion and drying shrinkage can be regarded as very important influential factors for the initial behavior of the concrete. It has been a general practice up until now to measure the coefficient of thermal expansion from completely cured concrete. This practice has an inherent limitation in that it does not give us the coefficient of thermal expansion at the initial stage of curing. Additionally, it has been difficult to obtain the measurement of drying shrinkage due to the time constraint. This research examined and analyzed the early drying shrinkage of the concrete and measurements of the thermal expansion coefficients to formulate a plan to control its initial behavior. Additionally, data values for the variables of influence were collected to develop a prediction model for the initial behavior of the concrete pavement and the verification of the proposed model. In this research, thermal expansion coefficients of the concrete in the initial stage of curing ranged between $8.9{\sim}10.8{\times}10^{-6}/^{\circ}C$ Furthermore, the effects of the size and depth of the concrete on the drying shrinkage were analyzed and confirmed.

  • PDF

Motion Compensated Deinterlacing with Variable Block Sizes

  • Kim, In-Ho;Lee, Chul-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.469-472
    • /
    • 2005
  • In this paper, we propose a new deinterlacing algorithm based on motion estimation and compensation with variable block size. Motion compensated methods using a fixed block size tend to produce undesirable artifacts when there exist complicated motion and high frequency components. In the proposed algorithm, the initial block size of motion estimation is determined based on the existence of global motion. Then, the block is divided depending on block characteristics. Since motion compensated deinterlacing may not always provide satisfactory results, the proposed method also use an intrafield spatial deinterlacing. Experimental results show that the proposed method provides noticeable improvements compared to motion compensated deinterlacing with a fixed block size.

  • PDF

Premature Failure of Deep Grooved Ball Bearing for Automobiles : Part 2 - Critical Dent Size (자동차용 깊은홈 볼베어링의 조기파손 : 2보 - 임계압흔의 크기)

  • Hyun Joons;Park Tae Jo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.395-401
    • /
    • 2003
  • In this paper, the dent printing phenomena and critical dent size which lead to premature failure of deep grooved ball bearing for automobiles are presented. The results of newly assembled test bearings showed that the ball dent size strongly affect the bearing life and inner ring raceways were the major failed parts in spite of using the dented balls. The dent printing phenomena are a root cause of premature failure, which was not reported until now. And there exist the critical ball dent size for given rolling bearings and operating conditions. So, the initial condition of tribologically mating parts should be treated as important as the failed body itself.

  • PDF