• Title/Summary/Keyword: Initial pole-position estimation

Search Result 18, Processing Time 0.028 seconds

Algorithm for a Initial Pole Position Estimation of PMLSM (영구자석 선형동기전동기의 초기각 추정 알고리즘)

  • Lee Young-Ho;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.104-108
    • /
    • 2003
  • This paper explained algorithm for a initial pole position estimation of a permanent magnet linear synchronous motor(PMLSM). Generally this motor is considered initial pole position with a position sensor such as incremental encoder for the precise initial pole position estimation and high performance. But this is based on the principle that the initial pole position is accomplished by the PI controller using the maximum values of a position error generated by the new proposed two reference frames and also by using a rated force for input. the proposed algorithm does not utilize the general methods such as impedance ratio, EMF and using the magnetic saturation. In other words, this can be applied without respect to variety of the motor structure because of insensitivity to the motor parameters. In conclusion, simulation results are presented to confirm performance of initial pole position estimation method.

  • PDF

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

A Study of Initial Pole Position Estimation for Interior Permanent Magnet Motor (매입형 영구자석 전동기의 초기 극위치 추정에 관한 연구)

  • Park, Chang-Soo;Lee, Geun-Ho;Nam, Hyuk;Lee, Ji-Young;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.955-957
    • /
    • 2003
  • In this paper deal with Initial Pole Position Estimation for Interior Permanent Magnet Motor. Generally, Brushless motor is considered Initial Pole Position with absolute encoder or resolver, etc. In the motor, the flux from the magnets is large enough to saturate the stator iron, results in different inductance values along the pole position. Based upon the relationship between magnitude of inductance and the resultant magnetic filed, initial pole position is estimated at standstill without position sensors, especially, this paper provide the direction of the magnetization. Finally, analysis results are presented to confirm ability of initial pole position estimation.

  • PDF

Initial Pole Position Estimation of Surface PM-LSM

  • Kim, Tae-Woong;Junichi Watanabe;Sumitoshi Sonoda;Junji Hirai
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The elimination of a pole sensor is desirable due to the low-cost requirement, the compactness, and the applied drives. This paper proposes the algorithm for the initial pole-position estimation of a surface permanent magnet linear synchronous motor (PM-LSM), which is carried out under the closed loop control without a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole position (IPP) is estimated by the trigonometric function of the two reference currents. The effectiveness of the proposed algorithm is confirmed by testing a surface PM-LSM with large disturbance, which result shows that IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction is existed.

  • PDF

Initial Pole Position Estimation of a Magnetic Pole Sensorless Permanent Magnet Synchronous Motor (자극센서 없는 영구자석 동기전동기의 초기 자극위치 추정)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.127-131
    • /
    • 2003
  • This paper describes an initial pole position estimation method of a magnetic pole sensorless permanent magnet synchronous motor(PMSM) with an incremental encoder, The accurate initial pole position is estimated by using an efficient numerical method of Secant Method, which finds either of two zero torque/force positions and then the correct d-axis. It can be simply applicable to both rotary and linear PMSM because it only requires the tuned current controller and the relative position information. The experimental results show the validity of the proposed method with respect to highly accurate pole position estimation under the moderate moving distance and convergence time.

  • PDF

Advanced Method for an Initial Pole Position Estimation of a PMLSM (PMLSM의 개선된 초기 자극위치 추정방법)

  • Lee Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.124-129
    • /
    • 2005
  • This paper presents an advanced method for an initial pole position estimation of a Permanent Magnet Linear Synchronous Motor(PMLSM) that has an accurate incremental encoder for servo applications but does not have Hall sensors as a magnetic pole sensor. By appropriately using the secant method as a numerical method the proposed algorithm finds either of two zero force positions and then the correct d-axis by applying a q-axis test current. It only requires the tuned current controller and the relative position information md so it can be simply applicable to a rotary PMSM. The experimental results show the validity of the proposed method, which has an excellent performance with respect to an accurate pole position estimation under the minimal moving distance(average of about 85㎛) during the estimation process.

Initial Pole Position Estimation Agorithm for PM-LSM by Pseudo-Position Control (준위치제어를 통한 영구자석형 리니어동기모터의 초기자극위치 추정알고리즘)

  • Kim, Tae-Woong;Min, Wan-Ki;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.578-580
    • /
    • 2005
  • This paper proposes the algorithm for the initial pole-position estimation of a surface PM-LSM, which is carried out under the pseudo-position control with-out a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole-position is calculated by the reverse trigonometric-function using the two reference currents, which are informed from the speed controller. The effectiveness of the proposed algorithm is confirmed by the arithmetical analysis and the experiment. IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction are existed.

  • PDF

Advanced Method for an Initial Pole Position Estimation of a PMLSM (PMLSM의 개선된 초기 자극위치 추정방법)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.316-320
    • /
    • 2004
  • This paper presents an advanced method for an initial pole position estimation of a PMLSM (Permanent Magnet Linear Synchronous Motor) that has an incremental encoder for servo applications but does not have Hall sensors as a magnetic pole sensor. The proposed algorithm finds either of two zero force positions and then the correct d-axis by appropriately using the secant method as a numerical method. It only requires the tuned current controller and the relative position information and so it can be simply applicable to a rotary PMSM. The experimental results show the validity of the proposed method with respect to accurate pole position estimation under the minimal moving distance during estimation process.

  • PDF

Algorithm for the Initial Pole Position Estimation of Permanent Magnet Linear Synchronous Motor (영구자석 선형동기전동기의 초기자극 위치 추정 알고리즘)

  • Yun Won-Eel;Lee Young-Ho;Choi Jong-Woo;Kim Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • This paper has proposed an algorithm for the initial pole position estimation of a permanent magnet linear synchronous motor(PMLSM). The algorithm finds the initial pole position observing the maximum values of a position generated by the new proposed two reference frames for the same force input. So, the proposed algorithm does not utilize the motor parameters and is insensitive to them. Moreover, the proposed algorithm is easily realized because the proposed method is just using PI controller

Initial Pole Position Estimation Algorithm of a Z-Axis PMLSM (Z축 선형 영구자석 동기전동기의 초기각 추정 알고리즘)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.328-330
    • /
    • 2007
  • This paper deals with the estimation method on the initial pole position of a z-axis permanent magnet linear synchronous motor(PMLSM) without magnetic pole sensors such as Hall sensors. The proposed method takes account of the z-axis conditions such as the gravitational force and also the load conditions. The algorithm consists of two steps. The first step is to estimate the initial q-axis approximately by monitoring the movements at predefined different test q-axes. The second step is to estimate the real q-axis as accurately as possible based on the results at three different test q-axes. Experimental results on the z-axis PMLSM show good estimation characteristics of the proposed method.

  • PDF