Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
Journal of Korean Society for Atmospheric Environment
/
v.19
no.5
/
pp.595-610
/
2003
The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.
Newly constructed, high-rise dense building areas by urban development can cause changes in local wind fields. Wind fields were analyzed to assess the impact on the local meteorology due to the land use changes during the urban redevelopment called "Eunpyeong new town" in north-western Seoul using CFD_NIMR_SNU (Computational Fluid Dynamics, National Institute of Meteorological Research, Seoul National University) model. Initial value of wind speed and direction use analysis value of AWS (Automatic Weather Station) data during 5 years. In the case of the pre-construction with low rise built-up area, it was simulated that the spatial distribution of horizontal wind fields depends on the topography and wind direction of initial inflow. But, in the case of the post-construction with high rise built-up area, it was analyzed that the wind field was affected by high rise buildings as well as terrain. High-rise buildings can generate new circulations among buildings. In addition, small size vortexes were newly generated by terrain and high rise buildings after the construction. As high-rise buildings act as a barrier, we found that the horizontal wind flow was separated and wind speed was reduced behind the buildings. CFD_NIMR_SNU was able to analyze the impact of high-rise buildings during the urban development. With the support of high power computing, it will be more common to utilize sophisticated numerical analysis models such as CFD_NIMR_SNU in evaluating the impact of urban development on wind flow or channel.
This study aims at examining the sensitivity of numerical simulations to the resolution of initial and boundary data, and to an application of WRF (Weather Research and Forecasting) 3DVAR (Three Dimension Variational data Assimilation). To do this, we ran the WRF model by using GDAS (Global Data Assimilation System) FNL (Final analyses) and the KLAPS (Korea Local Analysis and Prediction System) analyses as the WRF's initial and boundary data, and by using an initial field made by assimilating the radar data to the KLAPS analyses. For the sensitivity experiment, we selected a heavy rainfall case of 21 September 2010, where there was localized torrential rain, which was recorded as 259.5 mm precipitation in a day at Seoul. The result of the simulation using the FNL as initial and boundary data (FNL exp) showed that the localized heavy rainfall area was not accurately simulated and that the simulated amount of precipitation was about 4% of the observed accumulated precipitation. That of the simulation using KLAPS analyses as initial and boundary data (KLAPC exp) showed that the localized heavy rainfall area was simulated on the northern area of Seoul-Gyeonggi area, which renders rather difference in location, and that the simulated amount was underestimated as about 6.4% of the precipitation. Finally, that of the simulation using an initial field made by assimilating the radar data to the KLAPS using 3DVAR system (KLAP3D exp) showed that the localized heavy rainfall area was located properly on Seoul-Gyeonggi area, but still the amount itself was underestimated as about 29% of the precipitation. Even though KLAP3D exp still showed an underestimation in the precipitation, it showed the best result among them. Even if it is difficult to generalize the effect of data assimilation by one case, this study showed that the radar data assimilation can somewhat improve the accuracy of the simulated precipitation.
To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.
Air quality models have been widely used to study and simulate many air quality issues. In the simulation, it is important to raise the accuracy of meteorological predicted data because the results of air quality modeling is deeply connected with meteorological fields. Therefore in this study, we analyzed the effects of meteorological fields on the air quality simulation. This study was designed to evaluate MM5 predictions by using different initial condition data and different observations utilized in the data assimilation. Among meteorological scenarios according to these input data, the results of meteorological simulation using National Centers for Environmental Prediction (Final) Operational Global Analysis data were in closer agreement with the observations and resulted in better prediction on ozone concentration. And in Seoul, observations from Regional Meteorological Office for data assimilations of MM5 were suitable to predict ozone concentration. In other areas, data assimilation using both observations from Regional Meteorological Office and Automatical Weather System provided valid method to simulate the trends of meteorological fields and ozone concentrations. However, it is necessary to vertify the accuracy of AWS data in advance because slightly overestimated wind speed used in the data assimilation with AWS data could result in underestimation of high ozone concentrations.
Kim, Hyeyoung;Lee, Eunhee;Lee, Seung-Woo;Lee, Yong Hee
Atmosphere
/
v.28
no.2
/
pp.163-174
/
2018
In order to assimilate MHS satellite data into the convective scale model at KMA, ATOVS data are reprocessed to utilize the original high-resolution data. And then to improve the preprocessing experiments for cloud detection were performed and optimized to convective-scale model. The experiment which is land scattering index technique added to Observational Processing System to remove contaminated data showed the best result. The analysis fields with assimilation of MHS are verified against with ECMWF analysis fields and fit to other observations including Sonde, which shows improved results on relative humidity fields at sensitive level (850-300 hPa). As the relative humidity of upper troposphere increases, the bias and RMSE of geopotential height are decreased. This improved initial field has a very positive effect on the forecast performance of the model. According to improvement of model field, the Equitable Threat Score (ETS) of precipitation prediction of $1{\sim}20mm\;hr^{-1}$ was increased and this impact was maintained for 27 hours during experiment periods.
The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.
In an effort to examine the Regional Atmospheric Modeling System (RAMS ver. 4.3) to the initial meteorological input data, detailed observational data of NOAA satellite SST (Sea Surface Temperature) was employed. The NOAA satellite SST which is currently provided daily as a seven-day mean value with resolution of 0.1 $^{\circ}$ grid spacing was used instead of the climatologically derived monthly mean SST using in RAMS. In addition, the RAMS SST data must be changed new one because it was constructed in 1993. For more realistic initial meteorological fields, the NOAA satellite SST was incorporated into the RAMS-preprocess package named ISentropic Analysis package (ISAN). When the NOAA SST data was imposed to the initial condition of prognostic RAMS model, the resultant performance of near surface atmospheric fields was discussed and compared with that of default option of SST. We got the good results that the new SST data was made in a standard RAMS format and showed the detailed variation of SST. As the modeling grid became smaller, the SST differences of the NOAA SST run and the RAMS SST43 (default) run in diurnal variation were very minor but this research can apply to further study for the realistic SST situation and the development in predicting regional atmospheric field which imply the regional circulation due to differential surface heating between sea and land or climatological phenomenon.
Jo, Yu-Jin;Lee, Hyo-Jung;Chang, Lim-Seok;Kim, Cheol-Hee
Journal of Korean Society for Atmospheric Environment
/
v.33
no.6
/
pp.554-569
/
2017
Sensitivity analysis on $PM_{10}$ forecasting simulations was carried out by using two different initial and boundary conditions of meteorological fields: NCEP/FNL (National Centers for Environmental Prediction/Final Analysis) reanlaysis data and NCEP/GFS (National Centers for Environmental Prediction/Global Forecast System) forecasting data, and the comparisons were made between two different simulations. The two results both yielded lower $PM_{10}$ concentrations than observations, with relatively lower biased results by NCEP/FNL than NCEP/GFS. We explored the detailed individual meteorological variables to associate with $PM_{10}$ prediction performance. With the results of NCEP/FNL outperforming GFS, our conclusion is that no particular significant bias was found in temperature fields between NCEP/FNL and NCEP/GFS data, while the overestimated wind speed by NCEP/GFS data influenced on the lower $PM_{10}$ concentrations simulation than NCEP/FNL, by decreasing the duration time of high-$PM_{10}$ loaded air mass over both coastal and metropolitan areas. These comparative characteristics of FNL against GFS data such as maximum 3~4 m/s weaker wind speed, $PM_{10}$ concentration control with the highest possible factor of 1.3~1.6, and one or two hour difference of peak time for each case in this study, were also reflected into the results of statistical analysis. It is implying that improving the surface wind speed fluctuation is an important controlling factor for the better prediction of $PM_{10}$ over Korean Peninsula.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.10
no.1
/
pp.69-78
/
2005
ARCO and TAO data which supply three dimensional global ocean information are assimilated to the background field from a general circulation model, MOM3. Using a variational Analysis using Filter (VAF), which is a spatial variational filter designed to reduce computational time and space efficiently and economically, observed ARGO and TAO data are assimilated to the OGCM-generated background sea temperature for the generation of initial condition of the model. For the assessment of the assimilation impact, a comparative experiment has been done by integrating the model from different intial conditions: one from ARGO-, TAO-data assimilated initial condition and the other from background state without assimilation. The assimilated analysis field not only depicts major oceanic features more realistically but also reduces several systematic model bias that appear in every current OGCMs experiments. From the 10-month of model integrations with and without assimilated initial conditions, it is found that the major assimilated characteristics in sea temperature appeared in the initial field remain persistently throughout the integration. Such implies that the assimilated characteristics of the reduced sea temperature bias is to last in the integration without rapid restoration to the non-assimilated OGCM integration state by dispersing mass field in the form of internal gravity waves. From our analysis, it is concluded that the data assimilation method adapted in this study to MOM3 is reasonable and applicable with dynamical consistency. The success in generating initial condition with ARGO and TAO data assimilation has significant implication upon the prediction of the long-term climate and weather using ocean-atmosphere coupled model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.