• Title/Summary/Keyword: Initial material size

Search Result 275, Processing Time 0.025 seconds

An experimental study on the filtration test of cotton ball filters (코튼볼 여재의 여과 특성 실험 연구)

  • Kim, Sunghong;Kim, Heejun;Kim, Donghan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • In order to measure the filtration characteristics of a cotton ball shape filter, the experiments of suspended solids(SS) surrogate material selection and filtration performance have been carried out in this study. Between the two materials of powdered activated carbon(PAC) and powdered red-clay, PAC is more suitable surrogate material in terms of experimental criteria and particle size distribution in the non-point source pollutants removal system. As a result of the filtration experiments with the cotton ball shape filter, the initial headloss was about 8 cm, and the headloss slightly increased over filtration time. The Kozeny-Carman equation was used to analyze the changes of pressure and porosity during the filtration. The initial porosity was calculated as 0.945 and it decreased to 0.936 at the end of design filtration time. As the filtration continued, the SS concentration of the filtered water gradually increased and the SS removal rate gradually decreased. When the SS target removal efficiency is assumed to be 80%, the cumulative SS removal capacity is expected as $28.8kg/m^2$. This means the volume loading rate of the cotton ball shape filter can be $115m^3/m^2$ when the typical SS concentration of non-point source water pollution is assumed as 250 mg/L.

Coalescence behavior of dispersed domains in binary immiscible fluid mixtures having bimodal size distributions under steady shear flow

  • Takahashi Yoshiaki;Kato Tsuyoshi
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.125-130
    • /
    • 2005
  • Coalescence process of binary immiscible fluid mixtures having bimodal size distributions, prepared by mixing two pre-sheared samples at different shear rates, ${\gamma}_{pre1}\;and\;{\gamma}_{pre2}$, under shear flow at a final shear rate, ${\gamma}_f$, are examined by transient shear stress measurements and microscopic observations in comparison with the results for simply pre-sheared samples having narrow size distributions (unimodal distribution samples). Component fluids are a silicone oil (PDMS) and a hydrocarbon-formaldehyde resin (Genelite) and their viscosities are 14.1 and 21.0 $pa{\cdot}sec$ at room temperature $(ca.\;20^{\circ}C)$, respectively. The weight ratio of PDMS: Genelite was 7:3. Three cases, $({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;({\gamma}_{pre1}=0.8sec^{-1},\;{\gamma}_{pre2}=4.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;and\;({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0^sec^{-1}\;and\;{\gamma}_f=7.2sec^{-1})$ the first case, transient shear stress did not show any significant difference but domains larger than the initial state are observed at short times. In the latter cases, there exist undershoot of shear stress, reflecting existence of deformed large domains, which is confirmed by the direct observation. It is concluded that coalescence between large and small domains more frequently occur than coalescence between the domains with similar size in the bimodal distribution samples.

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향)

  • Kim, Ji-Won;Baek, Min-Seok;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery (이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.798-803
    • /
    • 2018
  • In order to use Si as an anode material for lithium-ion battery, the particle size was controlled to less than $0.5{\mu}m$ and carbon was coated on the surface with the thickness less than 10 nm. The carbon fiber was grown on the Si surface with 50~150 wt%, and the carbon coating was carried out once again. The Si composite material was mixed with dissimilar metals to increase the conductivity, and graphite was mixed to improve cyclic life characteristics. The physical and electrochemical characteristics of composite materials were measured with XRD, SEM, TEM and coin cell. The discharge capacity of Si/PC/CNF/PC was lower than that of Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber). However, the cyclic life of Si/PC/CNF/PC was higher. Initial discharge capacity of 1512 mA h g-1 at 0.2 C rate and initial efficiency of 78% were shown. It also showed a capacity retention of 94% in 10 cycles.

An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells (패각을 사용한 철근콘크리트 유공보의 공학적 특성에 관한 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • This is an experimental study on the engineering characteristics of perforated reinforced concrete beams with shells. In the material matter of this study, the water cement ratio put 60%, the ratio of substitution of oyster shells to fine aggregate 30%. And in the structural matter, the form of opening put circle and square, the size of opening as the radius and the length of it changed from one to three times of the beam depth with a change presence and absence of reinforced steel around opening. All thirteen reinforced concrete beam tests composed one standard beam and twelve six beams with the circle and square opening were tested in shear strength under two points loading and compared and analyzed the characteristics of test beams under the same conditions one another. The results of the study showed as followed. 1) The initial crack load value of the opening test beams is similar the standard beam but the maximum load value decreased with increase in proportion of the opening size, in the square opening than the circle opening and in the absence than the presence of reinforced steel. 2) As the difference between the circle opening and the square opening beams is represented 2.17~9.8% in the maximum load value and the load capacity of the square opening suddenly decrease than it of the circle opening, it is judged because of the shortage of concrete section, the concentration of the stress in the corner of the square opening and material influence of shell substitution. 3) The failure figure such as the pattern of the crack and so on is represented brittle failure as the opening size is the bigger and the ratio of substitution is higher because of the lack material properties.

Characterization of (La,Sr))$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ Interface with Citric Acid Contents and Sintering Temperature (시트르산의 양과 소결온도에 따른 (La,Sr)$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ 계면특성)

  • 윤일영;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 1998
  • G $d_{0.2}$C $e_{0.8}$ $O_{1.9}$(CGO) for electrolyte and L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM50) for cathode in Solid Oxide Fuel Cells(SOFC) were synthesized by citrate process. Specimens were prepared with sintering temperatures at 110$0^{\circ}C$, 120$0^{\circ}C$ and 130$0^{\circ}C$, which were fabricated by slurry coating with citric acid contents. Interfacial resistance was measured between cathode and electrolyte using AC-impedance analyzer. With various citric acid content, the degree of agglomeration for the initial particles changed. Also sintering temperature changed the particle size and the degree of densification of cathode. Factors affecting the interfacial resistance were adherent degree of the electrolyte and cathode, distribution of TPB(three phase boundaries, TPB i.e., electrolyte/electrode/gas phase area) and porosity of cathode. By increasing the sintering temperature, particle size and densification of the cathode were increased. And then, TPB area which occurs catalytic reaction was reduced and so interfacial resistance was increased.sed.sed.d.

  • PDF

Properties of Alumina Powder Prepared by Precipitation Method (III) : Sintering Behavior (침전법으로 제조한 Alumina 분말의 특성(III) : 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.465-472
    • /
    • 1988
  • Alpha alumina powder with fine particle size and narrow particle size distribution was prepared by precipitation method using Al2(SO4)3.18H2O as a starting material. The alpha alumina powder was prepared by calcining aluminum hydroxide which was formed under various pH values. The sinterabilityof alpha alumina powder and the effect of MgO on the sinterability of alpha alumina powder were investigated. The sinterability of alpha alumina powder was the order of pH=10≒pH11>pH=7≒pH9, and alpha alumina obtained from boehmite which was prepared by precipitation method reached to 97.5% of theoretcal density by the pressureless sintering. The effect of MgO on volume shrinkage of alumina was very slight in the initial sintering stage but remarkable in the final sintering stage. It was also found that MgO controlled effectively the grain growth of alumina.

  • PDF

Extraction of Vanadium Powder by Metallothermic Reduction (금속환원법에 의한 바나듐 분말 추출)

  • Lee, Dong-Won;Heo, Sang-Hyun;Yeom, Jong-Taek;Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.43-47
    • /
    • 2013
  • The extraction of metallic pure vanadium powder from raw oxide has been tried by Mg-reduction. In first stage, $V_2O_5$ powders as initial raw material was reduced by hydrogen gas into $V_2O_3$ phase. $V_2O_3$ powder was reduced in next stage by magnesium gas at 1,073K for 24 hours. After reduction reaction, the MgO component mixed with reduced vanadium powder were dissolved and removed fully in 10% HCl solution for 5 hours at room temperature. The oxygen content and particle size of finally produced vanadium powders were 0.84 wt% and 1 ${\mu}m$, respectively

A Model for Settling Rate of the Dredged Soil (준설토의 침강속도 추정모델의 개발)

  • Yun, Sang-Muk;Chang, Pyoung-Wuck;Won, Jung-Yun;Kim, Sung-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • The settling rate of the dredged soil may vary with mineral composition, grain size distribution, initial con contration and salt concentration of suspension of the site. A series of settling column test was performed to investigate the settling rate characteristics of solid suspension material from dredging and reclamation. The settling rate of soil mixed with various size of particles depended on clay fraction which showed a inherent flux. A model was developed to predict the particle flux of mixed soil from the clay flux and its applicability was verified.

Effect of the Initial Microstructure of Low Temperature Superconducting Monowire on Critical Current Density (초기 미세조직에 따른 저온 초전도 모노선재의 임계전류밀도 분석)

  • Kim, H.R.;Oh, Y.S.;Kim, S.J.;Lee, H.W.;Kim, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Increasing the critical current density of superconducting wire is one of the difficult challenges in the field of superconductivity. It is well known that the higher volume fraction of uniformly dispersed α-Ti is able to enhance the critical current density of superconducting material NbTi because α-Ti serves as a flux pinning center. The volume fraction of α-Ti highly depends on the grain size of NbTi because α-Ti precipitates at the grain boundaries or triple points. For this purpose, we investigated the effect of initial microstructures of NbTi obtained from hot rolling in various temperature conditions on the critical current density. In addition, subsequent heat treatment was assigned to precipitate α-Ti and groove rolling/cold drawing was adopted to produce a wire with a diameter of about 1.0 mm. It was observed that the band structure was formed after hot rolling at 500~600℃. It was also found that the volume fraction of α-Ti after hot rolling at 500~600℃ was higher and it led to the highest critical current density.